

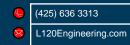
Structural Package for:

Forest Creek Estates Lot 2

5214 Forest Ave SE Mercer Island, WA 98040

Project No: S22201

November 10, 2022


STRUCTURAL ENGINEER
L120 ENGINEERING & DESIGN

13150 91ST PL NE KIRKLAND, WA 98034

CONTACT: MANS THURFJELL, PE

PHONE: 425-636-3313

MTHURFJELL@L120ENGINEERING.COM

Project Number:	Plan Name:	Sheet Number:
S22201	Forest Creek Estates Lot 2	DC
Engineer:	Specifics:	Date:
HK	Design Criteria	11/10/2022

Gravity Criteria: Code: IBC 2018

ROOF SYSTEM					
Snow	25.0	psf			
Dead Load:					
Composite Roofing	2.0	psf			
19/32" Plywood Sheathing	2.5	psf			
Trusses at 24" o.c.	3.0	psf			
Insulation	1.8	psf			
(2) Layers 5/8" GWB	4.4	psf			
Misc/Mech	1.3	psf			
Total Total	15.0	psf			

FLOOR SYSTEM					
Live Load:					
Residential	40.0	psf			
Dead Load:					
Flooring	3.0	psf			
3/4" T & G Plywood	2.5	psf			
Floor Joists at 16" o.c.	2.5	psf			
Insulation	0.5	psf			
(1) Layers 5/8" GWB	2.2	psf			
Miscellaneous	1.3	psf			
Total	12.0	psf			

EXTERIOR WALL SYSTEM				
2x6 at 16" o.c.	1.7	psf		
Insulation	1.0	psf		
1/2" Plywood Sheathing	1.5	psf		
(2) layers 5/8" GWB	4.4	psf		
Misc	3.4	psf		
Total Total	12.0	psf		

INTERIOR WALL SYSTEM				
2x4 at 16" o.c.	1.1	psf		
Insulation	0.5	psf		
(2) Layers 5/8" GWB	4.4	psf		
Misc	2.0	psf		
Total	8.0	psf		

SEISMIC PARAMETERS:

Code Reference: ASCE 7-16

R = 6.5 Bearing Wall System, Wood Structural Panel Walls

Mapped Spectral Acceleration, Ss = 1.45Mapped Spectral Acceleration, S1 = 0.503Soil Site Class = D

WIND PARAMETERS:

Code Reference: ASCE 7-16

Basic Wind Speed (3 second Gust) = 100 mph

Exposure: \mathbf{B} $\mathbf{Kzt} = \mathbf{1.00}$

SOIL PARAMETERS:

Soil Bearing Pressure = 1,500 psf competent native soil or structural fill 1/3 increase for short-term wind or seismic loading is acceptable

Frost Depth = 18 in

Lateral Wall Pressures:

Unrestrained Active Pressure = 35 pcf Cantilevered walls

Restrained Active Pressure = 50 pcf Plate Wall Design/Tank Walls

Passive Pressure = 250 pcf

Soil Friction Coeff. = 0.35

A This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback.

1 The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Search Information

Address: 5214 Forest Ave SE, Mercer Island, WA 98040,

USA

Coordinates: 47.55590489999999, -122.227624

Elevation: 119 ft

Timestamp: 2022-11-01T21:44:10.159Z

Hazard Type: Wind

ASCE 7-16	ASCE 7-10	ASCE 7-05
MRI 10-Year67 mph	MRI 10-Year 72 mph	ASCE 7-05 Wind Speed 85 mph
MRI 25-Year73 mph	MRI 25-Year 79 mph	
MRI 50-Year 78 mph	MRI 50-Year 85 mph	
MRI 100-Year 83 mph	MRI 100-Year 91 mph	
Risk Category I 92 mph	Risk Category I 100 mph	
Risk Category II 97 mph	Risk Category II 110 mph	
Risk Category III 104 mph	Risk Category III-IV 115 mph	
Risk Category IV		

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area – in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region.

Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility https://hazards.atcouncil.org/#/wind?lat=47.555904899999998lng=-122.227624&address=5214 Forest Ave SE%2C Mercer Island%2C WA 98040%2... 1

▲ This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback.

1 The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

ATC Hazards by Location

Search Information

Address: 5214 Forest Ave SE, Mercer Island, WA 98040,

USA

Coordinates: 47.55590489999999, -122.227624

Elevation: 119 ft

Timestamp: 2022-11-01T21:46:18.271Z

Hazard Type: Seismic

Reference ASCE7-16

Document:

Risk Category:

Site Class: D-default

Basic Parameters

Name	Value	Description
S _S	1.45	MCE _R ground motion (period=0.2s)
S ₁	0.503	MCE _R ground motion (period=1.0s)
S _{MS}	1.741	Site-modified spectral acceleration value
S _{M1}	* null	Site-modified spectral acceleration value
S _{DS}	1.16	Numeric seismic design value at 0.2s SA
S _{D1}	* null	Numeric seismic design value at 1.0s SA

^{*} See Section 11.4.8

▼Additional Information

Name	Value	Description
SDC	* null	Seismic design category
Fa	1.2	Site amplification factor at 0.2s
F _v	* null	Site amplification factor at 1.0s
CR _S	0.902	Coefficient of risk (0.2s)
CR ₁	0.898	Coefficient of risk (1.0s)
DC A	0.604	MCE neak ground appalaration

rga	U.Ö∠ I	iviC⊏ _G peak ground acceleration
F _{PGA}	1.2	Site amplification factor at PGA
PGA _M	0.745	Site modified peak ground acceleration
T _L	6	Long-period transition period (s)
SsRT	1.45	Probabilistic risk-targeted ground motion (0.2s)
SsUH	1.608	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	4.088	Factored deterministic acceleration value (0.2s)
S1RT	0.503	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.561	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.593	Factored deterministic acceleration value (1.0s)
PGAd	1.372	Factored deterministic acceleration value (PGA)

^{*} See Section 11.4.8

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Disclaimer

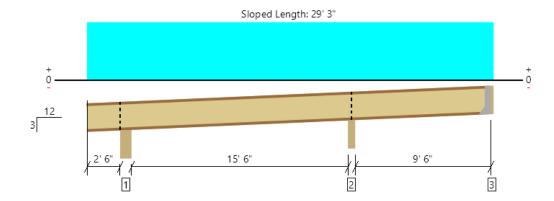
Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

FRAMING CALCULATIONS

BEAM REFERENCE PER PLAN

Roof		Forest Creek Lot 2			
Member Name	Results	Current Solution	Comments		
RJ-1	Passed	1 piece(s) 11 7/8" TJI® 210 @ 24" OC	Comments		
RJ-2	Passed	1 piece(s) 11 7/8" TJI® 210 @ 16" OC	Cantilever Reinforcement (PB1) Required		
RJ-3	Passed	1 piece(s) 11 7/8" TJI® 210 @ 24" OC	Cantilever Reinforcement (PB1) Required		
2nd Floor					
Member Name	Results	Current Solution	Comments		
2J-1 (Deck Joist)	Passed	1 piece(s) 2 x 10 DF No.2 @ 16" OC			
2B-1	Passed	1 piece(s) 5 1/4" x 14" 2.2E Parallam® PSL			
2B-2	Passed	1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL			
2B-3	Passed	1 piece(s) 3 1/2" x 18" 2.2E Parallam® PSL			
2B-4	Passed	1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL			
2B-4.1	Passed	1 piece(s) 3 1/2" x 18" 2.2E Parallam® PSL			
2B-5	Passed	1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL			
2B-6	Passed	1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL			
2B-6.1	Passed	1 piece(s) 5 1/4" x 9 1/2" 2.2E Parallam® PSL			
2B-7	Passed	1 piece(s) 5 1/2" x 16 1/2" 24F-V4 DF Glulam			
2H-1	Passed	1 piece(s) 4 x 10 DF No.1			
2H-1.1 (4x6 Check)	Failed	1 piece(s) 4 x 6 DF No.1 (Plank) 6x6 used on plan			
2H-1.1 (6x6 Check)	Passed	1 piece(s) 6 x 6 DF No.1			
PH-2	Passed	1 piece(s) 2 x 8 DF No.2			
2H-3 (High)	Passed	1 piece(s) 6 x 8 DF No.1			
2H-3 (Low)	Passed	1 piece(s) 6 x 6 DF No.1			
2H-4	Passed	1 piece(s) 4 x 6 DF No.2			
2H-5	Passed	2 piece(s) 2 x 8 DF No.2			
2H-6	Passed	1 piece(s) 5 1/2" x 7 1/2" 24F-V4 DF Glulam			
 2H-7	Passed	2 piece(s) 2 x 8 DF No.2			
2H-8	Passed	3 piece(s) 2 x 8 DF No.2			
2B-8	Passed	1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL			
2B-9	Passed	1 piece(s) 3 1/2" x 18" 2.2E Parallam® PSL			
2B-10	Passed	1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL			
_ow Roof		Land Annual Control of the Control o			
Member Name	Results	Current Solution	Comments		
_RJ-1	Passed	1 piece(s) 2 x 8 DF No.2 @ 16" OC			
 _RB-1	Passed	1 piece(s) 4 x 8 DF No.2			
1st Floor					
Member Name	Results	Current Solution	Comments		
IB-1 (Garage Header)	Passed	1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam			
IH-1	Passed	1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam			
IH-2	Passed	1 piece(s) 6 x 10 DF No.2			
IH-3	Passed	2 piece(s) 2 x 8 DF No.2			
IH-4	Passed	3 piece(s) 2 x 10 DF No.2			
IH-5	Passed	1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam			
Basement		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Member Name	Results	Current Solution	Comments		
BB-1	Passed	1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL	22.711.101.10		
3H-1	Passed	1 piece(s) 3 1/2" x 7 1/2" 24F-V4 DF Glulam			
3H-2	Passed	2 piece(s) 2 x 8 DF No.2			


ForteWEB Software Operator	Job Notes
Harrison Kliegl	SOD NOTES
L120 Engineering	
(425) 636-3313 hkliegl@l120engineering.com	

11/10/2022 4:12:44 PM UTC ForteWEB v3.4

File Name: Forest Creek Lot 2

Roof, RJ-1 1 piece(s) 11 7/8" TJI ® 210 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1332 @ 18' 7 1/4"	2543 (3.50")	Passed (52%)	1.15	1.0 D + 1.0 S (Adj Spans)
Shear (lbs)	702 @ 18' 5 1/2"	1903	Passed (37%)	1.15	1.0 D + 1.0 S (Adj Spans)
Moment (Ft-lbs)	-1877 @ 18' 7 1/4"	4364	Passed (43%)	1.15	1.0 D + 1.0 S (Adj Spans)
Live Load Defl. (in)	0.164 @ 10' 9/16"	0.818	Passed (L/999+)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.256 @ 10' 5/16"	1.091	Passed (L/766)		1.0 D + 1.0 S (Alt Spans)

Member Length: 29' 4 3/8"

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 3/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Overhang deflection criteria: LL (2L/240) and TL (2L/180).
- · Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Beveled Plate - HF	5.50"	5.50"	3.50"	293	480	773	Blocking
2 - Beveled Plate - HF	3.50"	3.50"	3.50"	505	827	1332	Blocking
3 - Hanger on 11 7/8" HF ledgerOnMasonry	1.50"	Hanger ¹	1.75" / - 2	80	180	260	See note 1

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- $\bullet\,\,^{\text{1}}$ See Connector grid below for additional information and/or requirements.
- \bullet $^{\rm 2}$ Required Bearing Length / Required Bearing Length with Web Stiffeners

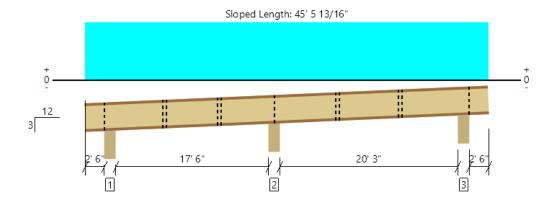
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 10" o/c	
Bottom Edge (Lu)	5' 5" o/c	

- $\bullet \mathsf{TJI}$ joists are only analyzed using Maximum Allowable bracing solutions.
- $\bullet {\sf Maximum\ allowable\ bracing\ intervals\ based\ on\ applied\ load}.$

Connector: Simpson Strong-Tie								
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
3 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A			

[•] Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Load	Location	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 28' 4 1/2"	24"	15.0	25.0	Roof Load


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com		

Roof, RJ-2 1 piece(s) 11 7/8" TJI ® 210 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1287 @ 20' 8 1/4"	3041 (5.25")	Passed (42%)	1.15	1.0 D + 1.0 S (Adj Spans)
Shear (lbs)	640 @ 20' 11"	1903	Passed (34%)	1.15	1.0 D + 1.0 S (Adj Spans)
Moment (Ft-lbs)	-2489 @ 20' 8 1/4"	4364	Passed (57%)	1.15	1.0 D + 1.0 S (Adj Spans)
Live Load Defl. (in)	0.299 @ 31' 10 3/4"	1.067	Passed (L/857)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.450 @ 32' 1/8"	1.423	Passed (L/569)		1.0 D + 1.0 S (Alt Spans)

Member Length: 45' 8 3/4"

PASSED

System: Roof Member Type: Joist Building Use: Residential Building Code: IBC 2018 Design Methodology: ASD Member Pitch: 3/12

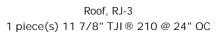
- Deflection criteria: LL (L/240) and TL (L/180).
- Overhang deflection criteria: LL (2L/240) and TL (2L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Permanent bracing at third points in the back span or a direct applied ceiling over the entire back span length is required at the left and right span of the member. See literature detail (PB1) For clarification.

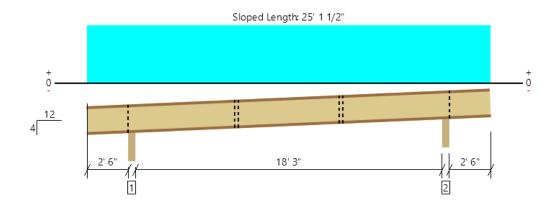
	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Beveled Plate - HF	5.50"	5.50"	3.50"	193	339	533	Blocking
2 - Beveled Plate - HF	5.50"	5.50"	3.50"	488	799	1287	Blocking
3 - Beveled Plate - HF	5.50"	5.50"	3.50"	228	384	612	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 6" o/c	
Bottom Edge (Lu)	4' 8" o/c	

- $\bullet\mbox{TJI}$ joists are only analyzed using Maximum Allowable bracing solutions.
- •Maximum allowable bracing intervals based on applied load.


			Dead	Snow	
Vertical Load	Location	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 44' 1 1/2"	16"	15.0	25.0	Roof Load


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	977 @ 2' 7 3/4"	2600 (3.50")	Passed (38%)	1.15	1.0 D + 1.0 S (Adj Spans)
Shear (lbs)	717 @ 2' 9 1/2"	1903	Passed (38%)	1.15	1.0 D + 1.0 S (Adj Spans)
Moment (Ft-lbs)	3309 @ 11' 11"	4364	Passed (76%)	1.15	1.0 D + 1.0 S (Alt Spans)
Live Load Defl. (in)	0.485 @ 11' 11"	0.977	Passed (L/484)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.777 @ 11' 11"	1.303	Passed (L/302)		1.0 D + 1.0 S (Alt Spans)

Member Length : 25' 5 7/16"

PASSED

System: Roof Member Type: Joist Building Use: Residential Building Code: IBC 2018 Design Methodology: ASD Member Pitch: 4/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Overhang deflection criteria: LL (2L/240) and TL (2L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Permanent bracing at third points in the back span or a direct applied ceiling over the entire back span length is required at the left and right span of the member. See literature detail (PB1) For clarification.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Beveled Plate - HF	3.50"	3.50"	3.50"	377	601	977	Blocking
2 - Beveled Plate - HF	3.50"	3.50"	3.50"	377	601	977	Blocking

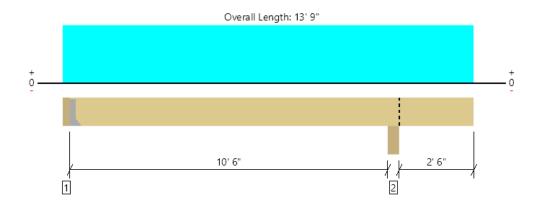
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 11" o/c	
Bottom Edge (Lu)	8' 8" o/c	

- $\bullet\mathsf{TJI}$ joists are only analyzed using Maximum Allowable bracing solutions.
- •Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Load	Location	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 23' 10"	24"	15.0	25.0	Roof Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com		

2nd Floor, 2J-1 (Deck Joist) 1 piece(s) 2 x 10 DF No.2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	585 @ 3 1/2"	1406 (1.50")	Passed (42%)		1.0 D + 0.75 L + 0.75 S (Alt Spans)
Shear (lbs)	503 @ 10' 1/4"	1665	Passed (30%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1486 @ 5' 6 13/16"	2029	Passed (73%)	1.00	1.0 D + 1.0 L (Alt Spans)
Live Load Defl. (in)	0.156 @ 5' 7 11/16"	0.268	Passed (L/823)		1.0 D + 0.75 L + 0.75 S (Alt Spans)
Total Load Defl. (in)	0.199 @ 5' 7 3/8"	0.536	Passed (L/647)		1.0 D + 0.75 L + 0.75 S (Alt Spans)
TJ-Pro™ Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Overhang deflection criteria: LL (2L/480) and TL (2L/240).
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- · Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Hanger on 9 1/4" DF beam	3.50"	Hanger ¹	1.50"	142	453/-4	183	618	See note 1
2 - Beam - GLB	5.50"	5.50"	1.50"	225	675	281	943	Blocking

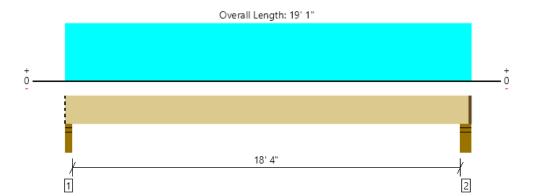
- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- $\bullet \ \, \text{At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger and the following property of the property of the material of$
- ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	Continuous	
Bottom Edge (Lu)	End Bearing Points	

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	LU28	1.50"	N/A	8-10dx1.5	6-10dx1.5	

[•] Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Uniform (PSF)	0 to 13' 9"	16"	20.0	60.0	25.0	Deck Load


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com		

2nd Floor, 2B-1 1 piece(s) 5 1/4" x 14" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5419 @ 2"	7442 (3.50")	Passed (73%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	4584 @ 1' 5 1/2"	14210	Passed (32%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	24733 @ 9' 5 1/2"	40743	Passed (61%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.431 @ 9' 5 1/2"	0.465	Passed (L/517)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.617 @ 9' 5 1/2"	0.929	Passed (L/361)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- · Allowed moment does not reflect the adjustment for the beam stability factor.

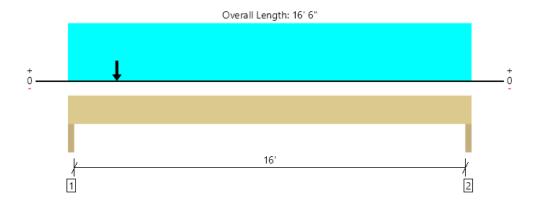
	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	2.55"	1636	3783	5419	Blocking
2 - Stud wall - HF	5.50"	4.00"	2.56"	1662	3850	5512	1 1/2" Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.
- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	18' 11" o/c	
Bottom Edge (Lu)	18' 11" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 18' 11 1/2"	N/A	23.0		
1 - Uniform (PSF)	0 to 19' 1" (Front)	10'	15.0	40.0	Floor Load


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com		

2nd Floor, 2B-2 1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7718 @ 1 1/2"	9844 (3.00")	Passed (78%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	7115 @ 1' 9"	18270	Passed (39%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	17127 @ 6' 4 7/8"	65252	Passed (26%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.072 @ 7' 7 1/4"	0.542	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.167 @ 7' 10 3/8"	0.813	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

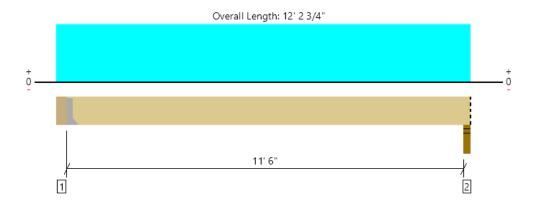
System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- A 4.8% decrease in the moment capacity has been added to account for lateral stability.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - HF	3.00"	3.00"	2.35"	3488	4231	619	7718	None
2 - Trimmer - HF	3.00"	3.00"	1.50"	2209	1269	619	3625	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 16' 6"	N/A	29.5			
1 - Uniform (PSF)	0 to 16' 6" (Front)	1'	15.0	40.0	-	Floor Load
2 - Uniform (PSF)	0 to 16' 6" (Back)	1'	20.0	60.0	25.0	Deck Load
3 - Uniform (PLF)	0 to 16' 6" (Top)	N/A	150.0	-	-	Wall Load Above
4 - Uniform (PSF)	0 to 16' 6" (Top)	2'	15.0	-	25.0	Roof Load From Above
5 - Point (lb)	2' (Top)	N/A	1662	3850	-	Linked from: 2B-1, Support 2


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com		

2nd Floor, 2B-3 1 piece(s) 3 1/2" x 18" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1576 @ 5 1/4"	3281 (1.50")	Passed (48%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	1094 @ 1' 11 1/4"	12180	Passed (9%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	4285 @ 6' 3"	43665	Passed (10%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.013 @ 6' 3"	0.291	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.037 @ 6' 3"	0.581	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Hanger on 18" PSL beam	5.25"	Hanger ¹	1.50"	1077	500	313	1686	See note 1
2 - Stud wall - HF	3.50"	3.50"	1.50"	1039	478	299	1621	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	11' 10" o/c	
Bottom Edge (Lu)	11' 10" o/c	

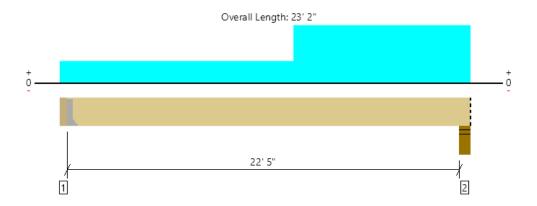
[•]Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie									
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
1 - Face Mount Hanger	THA413	1.75"	N/A	14-10d	4-10d				

[•] Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	5 1/4" to 12' 2 3/4"	N/A	19.7			
1 - Uniform (PSF)	0 to 12' 2 3/4" (Front)	2'	12.0	40.0	-	Floor Load
2 - Uniform (PLF)	0 to 12' 2 3/4" (Top)	N/A	100.0	-	-	Wall Load Above
3 - Uniform (PSF)	0 to 12' 2 3/4" (Top)	2'	15.0	-	25.0	Roof Load

Weverhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com	

2nd Floor, 2B-4 1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5734 @ 3 1/2"	5734 (1.75")	Passed (100%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	7624 @ 21' 2 1/2"	21011	Passed (36%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	41991 @ 13' 9 9/16"	75322	Passed (56%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.394 @ 11' 10 1/2"	0.564	Passed (L/686)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.711 @ 12'	1.127	Passed (L/380)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- · Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Hanger on 18" PSL beam	3.50"	Hanger ¹	1.75"	2344	3374	1285	5839	See note 1
2 - Stud wall - HF	5.50"	5.50"	4.53"	4639	1860	4807	9639	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- $\bullet\,\,^{\rm 1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	22' 11" o/c	
Bottom Edge (Lu)	22' 11" o/c	

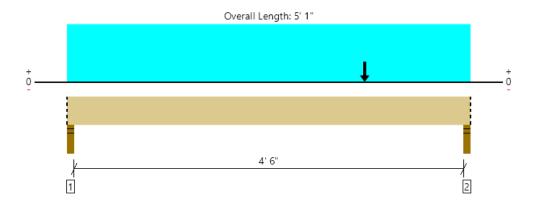
[•]Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie								
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
1 - Face Mount Hanger	HGUS5.50/14	4.00"	N/A	66-10d	22-10d			

[•] Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	3 1/2" to 23' 2"	N/A	29.5			
1 - Uniform (PSF)	0 to 13' (Front)	8' 6"	12.0	40.0	-	Floor Load
2 - Uniform (PSF)	13' to 23' 2" (Back)	2'	12.0	40.0	-	Floor Load
3 - Uniform (PLF)	13' to 23' 2" (Top)	N/A	100.0	-	-	Wall Load Above
4 - Uniform (PLF)	13' to 23' 2" (Top)	N/A	366.0	-	599.3	Linked from: RJ-2, Support 2

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@I120engineering.com		

MEMBER REPORT PASSED

2nd Floor, 2B-4.1 1 piece(s) 3 1/2" x 18" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4668 @ 4' 11"	4961 (3.50")	Passed (94%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	2659 @ 3' 3 1/2"	12180	Passed (22%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	5291 @ 3' 9"	43665	Passed (12%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.007 @ 3' 9"	0.119	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.012 @ 3' 9"	0.237	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- · Allowed moment does not reflect the adjustment for the beam stability factor.

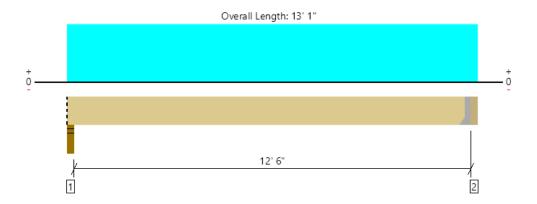
	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.50"	687	1032	316	1719	Blocking
2 - Stud wall - HF	3.50"	3.50"	3.29"	1879	2749	969	4668	Blocking

[•] Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 1" o/c	
Bottom Edge (Lu)	5' 1" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 5' 1"	N/A	19.7			
1 - Uniform (PSF)	0 to 5' 1" (Front)	2'	12.0	40.0	-	Floor Load
2 - Point (lb)	3' 9" (Front)	N/A	2344	3374	1285	Linked from: 2B-4, Support 1


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com		

2nd Floor, 2B-5 1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4073 @ 12' 9 1/2"	4922 (1.50")	Passed (83%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	3105 @ 11' 3 1/2"	21011	Passed (15%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	12854 @ 6' 5 3/4"	75322	Passed (17%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.042 @ 6' 5 3/4"	0.316	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.080 @ 6' 5 3/4"	0.631	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- · Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.97"	2005	1361	1539	4180	Blocking
2 - Hanger on 18" PSL beam	3.50"	Hanger ¹	1.50"	2036	1387	1568	4252	See note 1

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ¹ See Connector grid below for additional information and/or requirements.

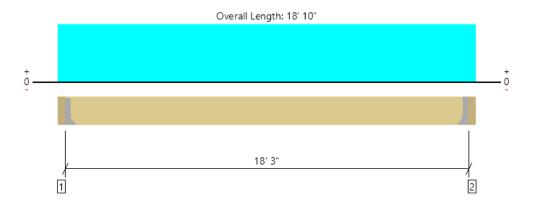
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	12' 10" o/c	
Bottom Edge (Lu)	12' 10" o/c	

[•]Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-1	Tie Tie					
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Face Mount Hanger	HU616	2.50"	N/A	26-16d	12-16d	

[•] Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 12' 9 1/2"	N/A	29.5			
1 - Uniform (PSF)	0 to 13' 1" (Back)	5' 3"	12.0	40.0	-	Floor Load
2 - Uniform (PSF)	0 to 13' 1" (Front)	1'	15.0	-	25.0	Low Roof Load
3 - Uniform (PLF)	0 to 13' 1" (Top)	N/A	100.0	-	-	Wall Load Above
4 - Uniform (PSF)	0 to 13' 1" (Top)	8' 6"	12.0	-	25.0	Roof Load


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@I120engineering.com		

2nd Floor, 2B-6 1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4474 @ 3 1/2"	4922 (1.50")	Passed (91%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	3443 @ 1' 9 1/2"	18270	Passed (19%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	18798 @ 9' 5"	65497	Passed (29%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.127 @ 9' 5"	0.456	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.241 @ 9' 5"	0.913	Passed (L/910)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Hanger on 18" PSL beam	3.50"	Hanger ¹	1.50"	2172	2072	1177	4608	See note 1
2 - Hanger on 18" PSL beam	3.50"	Hanger ¹	1.50"	2172	2072	1177	4608	See note 1

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	18' 3" o/c	
Bottom Edge (Lu)	18' 3" o/c	

[•]Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie								
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
1 - Face Mount Hanger	HGUS5.50/14	4.00"	N/A	66-10d	22-10d			
2 - Face Mount Hanger	HGUS5.50/14	4.00"	N/A	66-10d	22-10d			

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

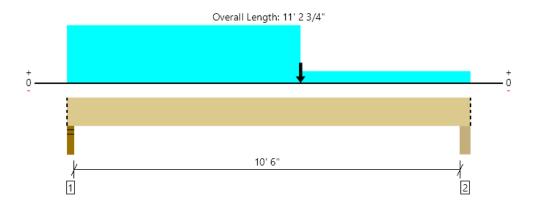
			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	3 1/2" to 18' 6 1/2"	N/A	29.5			
1 - Uniform (PSF)	0 to 18' 10" (Front)	1'	12.0	40.0	-	Floor Load
2 - Uniform (PSF)	0 to 18' 10" (Back)	3'	20.0	60.0	25.0	Deck Load
3 - Uniform (PLF)	0 to 18' 10" (Top)	N/A	100.0	-	-	Wall Load Above
4 - Uniform (PSF)	0 to 18' 10" (Top)	2'	15.0	-	25.0	Roof Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com		


11/10/2022 4:12:44 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0

File Name: Forest Creek Lot 2

Page 12 / 47

MEMBER REPORT PASSED

2nd Floor, 2B-6.1 1 piece(s) 5 1/4" x 9 1/2" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4312 @ 2"	7442 (3.50")	Passed (58%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	3747 @ 10'	9643	Passed (39%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	16006 @ 6' 6"	19585	Passed (82%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.227 @ 5' 6 3/4"	0.269	Passed (L/569)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.389 @ 5' 7 3/8"	0.538	Passed (L/332)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

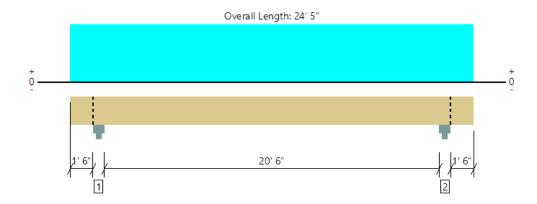
	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	2.03"	1553	2759	506	4312	Blocking
2 - Beam - HF	5.25"	5.25"	1.84"	1669	2196	789	3908	Blocking

[•] Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	11' 3" o/c	
Bottom Edge (Lu)	11' 3" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 11' 2 3/4"	N/A	15.6			
1 - Uniform (PSF)	0 to 6' 6" (Front)	10'	12.0	40.0	-	Floor Load
2 - Uniform (PSF)	6' 6" to 11' 2 3/4" (Front)	1'	20.0	60.0	25.0	Deck Load
3 - Point (lb)	6' 6" (Front)	N/A	2172	2072	1177	Linked from: 2B-6, Support 1


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com	

2nd Floor, 2B-7 1 piece(s) 5 1/2" x 16 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6427 @ 1' 8 3/4"	19663 (5.50")	Passed (33%)		1.0 D + 0.75 L + 0.75 S (Adj Spans)
Shear (lbs)	4481 @ 3' 4"	16033	Passed (28%)	1.00	1.0 D + 1.0 L (Adj Spans)
Pos Moment (Ft-lbs)	27354 @ 12' 2 1/2"	48036	Passed (57%)	1.00	1.0 D + 1.0 L (Alt Spans)
Neg Moment (Ft-lbs)	-751 @ 1' 8 3/4"	38474	Passed (2%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.446 @ 12' 2 1/2"	0.524	Passed (L/564)		1.0 D + 0.75 L + 0.75 S (Alt Spans)
Total Load Defl. (in)	0.607 @ 12' 2 1/2"	1.048	Passed (L/414)		1.0 D + 0.75 L + 0.75 S (Alt Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Overhang deflection criteria: LL (2L/480) and TL (2L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 0.96 that was calculated using length L = 20' 10 1/2".
- Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length L = 1' 10 1/2".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Column Cap - steel	5.50"	5.50"	1.80"	1734	4421	1837	6427	Blocking
2 - Column Cap - steel	5.50"	5.50"	1.80"	1734	4421	1837	6427	Blocking

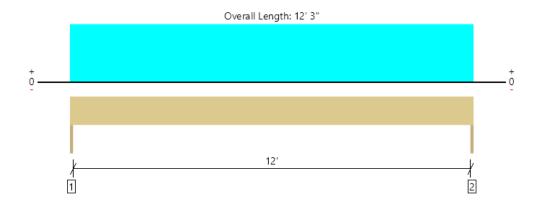
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	24' 5" o/c	
Bottom Edge (Lu)	24' 5" o/c	

 $\bullet {\sf Maximum\ allowable\ bracing\ intervals\ based\ on\ applied\ load}.$

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 24' 5"	N/A	22.1			
1 - Uniform (PSF)	0 to 24' 5" (Front)	6'	20.0	60.0	25.0	Deck Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com		

2nd Floor, 2H-1 1 piece(s) 4 x 10 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1030 @ 0	3281 (1.50")	Passed (31%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	880 @ 10 3/4"	4468	Passed (20%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	3155 @ 6' 1 1/2"	5577	Passed (57%)	1.15	1.0 D + 1.0 S (All Spans)
Vert Live Load Defl. (in)	0.129 @ 6' 1 1/2"	0.408	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Vert Total Load Defl. (in)	0.217 @ 6' 1 1/2"	0.613	Passed (L/677)		1.0 D + 1.0 S (All Spans)
Lat Member Reaction (lbs)	176 @ 12' 3"	N/A	Passed (N/A)	1.60	1.0 D + 0.6 W
Lat Shear (lbs)	164 @ 5"	6216	Passed (3%)	1.60	1.0 D + 0.6 W
Lat Moment (Ft-lbs)	539 @ mid-span	3324	Passed (16%)	1.60	1.0 D + 0.6 W
Lat Deflection (in)	0.182 @ mid-span	1.225	Passed (L/810)		1.0 D + 0.6 W
Bi-Axial Bending	0.48	1.00	Passed (48%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S

- Deflection criteria: LL (L/360) and TL (L/240).
- Lateral deflection criteria: Wind (L/120)
- A 2.8% decrease in the moment capacity has been added to account for lateral stability.
- Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	418	613	1030	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	418	613	1030	None

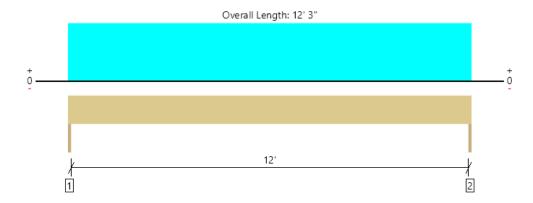
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

Lateral Connection	ons					
Supports	Plate Size	Plate Material	Connector	Type/Model	Quantity	Nailing
Left	2X	Hem Fir	Nails	10d (0.128" x 3") (End)	3	
Right	2X	Hem Fir	Nails	10d (0.128" x 3") (End)	3	

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 12' 3"	N/A	8.2		
1 - Uniform (PSF)	0 to 12' 3"	4'	15.0	25.0	Roof Load

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	2'	24.0	

[•] ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width.
• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.


ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com		

2nd Floor, 2H-1.1 (4x6 Check) 1 piece(s) 4 x 6 DF No.1 (Plank)

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	152 @ 0	5156 (1.50")	Passed (3%)		1.0 D (All Spans)
Shear (lbs)	142 @ 5"	2079	Passed (7%)	0.90	1.0 D (All Spans)
Moment (Ft-lbs)	467 @ 6' 1 1/2"	1150	Passed (41%)	0.90	1.0 D (All Spans)
Vert Live Load Defl. (in)	0.000 @ 0	0.408	Passed (2L/999+)		1.0 D (All Spans)
Vert Total Load Defl. (in)	0.377 @ 6' 1 1/2"	0.313	Failed (L/390)		1.0 D (All Spans)
Lat Member Reaction (lbs)	352 @ 12' 3"	N/A	Passed (N/A)	1.60	1.0 D + 0.6 W
Lat Shear (lbs)	319 @ 7"	3696	Passed (9%)	1.60	1.0 D + 0.6 W
Lat Moment (Ft-lbs)	1079 @ mid-span	2990	Passed (36%)	1.60	1.0 D + 0.6 W
Lat Deflection (in)	0.247 @ mid-span	1.225	Passed (L/595)		1.0 D + 0.6 W
Bi-Axial Bending	0.59	1.00	Passed (59%)	1.60	1.0 D + 0.6 W

- Deflection criteria: LL (L/360) and TL (5/16").
- Lateral deflection criteria: Wind (L/120)
- Member has been designed in flat (plank) orientation.
- Applicable calculations are based on NDS.

	Bearing Length			Loads to		
Supports	Total	Available	Required	Dead	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	152	152	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	152	152	None

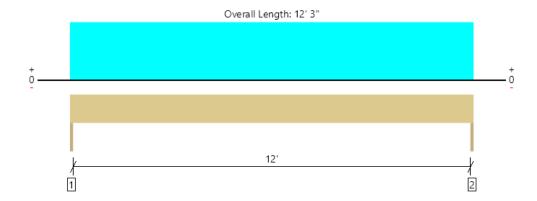
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

Lateral Connection	ons					
Supports	Plate Size	Plate Material	Connector	Type/Model	Quantity	Nailing
Left	2X	Hem Fir	Nails	10d (0.128" x 3") (End)	5	
Right	2X	Hem Fir	Nails	10d (0.128" x 3") (End)	5	

Vertical Loads	Location	Tributary Width	Dead (0.90)	Comments
0 - Self Weight (PLF)	0 to 12' 3"	N/A	4.9	
1 - Uniform (PLF)	0 to 12' 3"	N/A	20.0	Clerestory Window Load

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	4'	24.0	

[•] ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width.


[•] IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com		

2nd Floor, 2H-1.1 (6x6 Check) 1 piece(s) 6 x 6 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	169 @ 0	5156 (1.50")	Passed (3%)		1.0 D (All Spans)
Shear (lbs)	153 @ 7"	3086	Passed (5%)	0.90	1.0 D (All Spans)
Moment (Ft-lbs)	519 @ 6' 1 1/2"	2496	Passed (21%)	0.90	1.0 D (All Spans)
Vert Live Load Defl. (in)	0.000 @ 0	0.408	Passed (2L/999+)		1.0 D (All Spans)
Vert Total Load Defl. (in)	0.115 @ 6' 1 1/2"	0.313	Passed (L/999+)		1.0 D (All Spans)
Lat Member Reaction (lbs)	352 @ 12' 3"	N/A	Passed (N/A)	1.60	1.0 D + 0.6 W
Lat Shear (lbs)	319 @ 7"	5485	Passed (6%)	1.60	1.0 D + 0.6 W
Lat Moment (Ft-lbs)	1079 @ mid-span	4437	Passed (24%)	1.60	1.0 D + 0.6 W
Lat Deflection (in)	0.167 @ mid-span	1.225	Passed (L/879)		1.0 D + 0.6 W
Bi-Axial Bending	0.36	1.00	Passed (36%)	1.60	1.0 D + 0.6 W

- Deflection criteria: LL (L/360) and TL (5/16").
- Lateral deflection criteria: Wind (L/120)
- Applicable calculations are based on NDS.
- This product has a square cross section. The analysis engine has checked both edge and plank orientations to allow for either installation.

	Bearing Length			Loads to		
Supports	Total	Available	Required	Dead	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	169	169	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	169	169	None

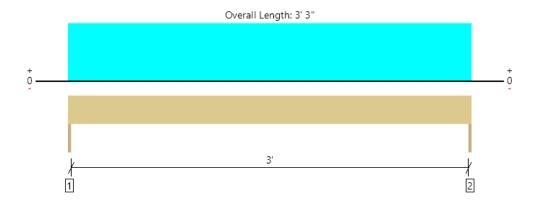
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

Lateral Connections									
Supports	Plate Size	Plate Material	Connector	Type/Model	Quantity	Nailing			
Left	2X	Hem Fir	Nails	10d (0.128" x 3") (End)	5				
Right	2X	Hem Fir	Nails	10d (0.128" x 3") (End)	5				

Vertical Loads	Location	Tributary Width	Dead (0.90)	Comments
0 - Self Weight (PLF)	0 to 12' 3"	N/A	7.7	
1 - Uniform (PLF)	0 to 12' 3"	N/A	20.0	Clerestory Window Load

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	4'	24.0	

[•] ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width.


[•] IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com		

2nd Floor, 2H-2 1 piece(s) 2 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	728 @ 0	1406 (1.50")	Passed (52%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	401 @ 8 3/4"	1501	Passed (27%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	591 @ 1' 7 1/2"	1308	Passed (45%)	1.15	1.0 D + 1.0 S (All Spans)
Vert Live Load Defl. (in)	0.009 @ 1' 7 1/2"	0.108	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Vert Total Load Defl. (in)	0.015 @ 1' 7 1/2"	0.162	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Lat Member Reaction (lbs)	52 @ 3' 3"	N/A	Passed (N/A)	1.60	1.0 D + 0.6 W
Lat Shear (lbs)	44 @ 3"	2088	Passed (2%)	1.60	1.0 D + 0.6 W
Lat Moment (Ft-lbs)	42 @ mid-span	450	Passed (9%)	1.60	1.0 D + 0.6 W
Lat Deflection (in)	0.017 @ mid-span	0.325	Passed (L/999+)		1.0 D + 0.6 W
Bi-Axial Bending	0.36	1.00	Passed (36%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S

- Deflection criteria: LL (L/360) and TL (L/240).
- Lateral deflection criteria: Wind (L/120)
- A 3.8% decrease in the moment capacity has been added to account for lateral stability.
- Applicable calculations are based on NDS.

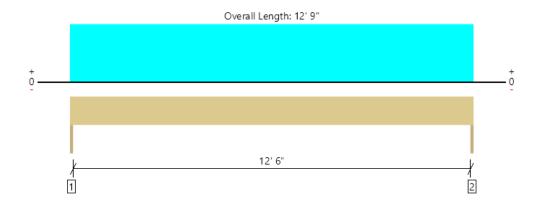
	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	281	447	728	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	281	447	728	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

Lateral Connections									
Supports	Plate Size	Plate Material	Connector	Type/Model	Quantity	Nailing			
Left	2X	Hem Fir	Nails	10d (0.128" x 3") (End)	2				
Right	2X	Hem Fir	Nails	10d (0.128" x 3") (End)	2				

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 3' 3"	N/A	2.8		
1 - Uniform (PSF)	0 to 3' 3"	11'	15.5	25.0	Roof Load

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	2'	26.5	


[•] ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width.
• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com		

2nd Floor, 2H-3 (High) 1 piece(s) 6 x 8 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	577 @ 0	5156 (1.50")	Passed (11%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	509 @ 9"	5376	Passed (9%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1838 @ 6' 4 1/2"	5930	Passed (31%)	1.15	1.0 D + 1.0 S (All Spans)
Vert Live Load Defl. (in)	0.096 @ 6' 4 1/2"	0.425	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Vert Total Load Defl. (in)	0.174 @ 6' 4 1/2"	0.637	Passed (L/880)		1.0 D + 1.0 S (All Spans)
Lat Member Reaction (lbs)	273 @ 12' 9"	N/A	Passed (N/A)	1.60	1.0 D + 0.6 W
Lat Shear (lbs)	248 @ 7"	7480	Passed (3%)	1.60	1.0 D + 0.6 W
Lat Moment (Ft-lbs)	872 @ mid-span	6050	Passed (14%)	1.60	1.0 D + 0.6 W
Lat Deflection (in)	0.107 @ mid-span	1.275	Passed (L/999+)		1.0 D + 0.6 W
Bi-Axial Bending	0.30	1.00	Passed (30%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S

- Deflection criteria: LL (L/360) and TL (L/240).
- Lateral deflection criteria: Wind (L/120)
- A 0.8% decrease in the moment capacity has been added to account for lateral stability.
- Applicable calculations are based on NDS.

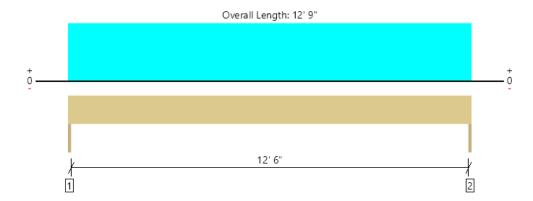
	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	258	319	577	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	258	319	577	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

Lateral Connections								
Supports	Plate Size	Plate Material	Connector	Type/Model	Quantity	Nailing		
Left	2X	Hem Fir	Nails	8d (0.113" x 2 1/2") (Toe)	4			
Right	2X	Hem Fir	Nails	8d (0.113" x 2 1/2") (Toe)	4			

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 12' 9"	N/A	10.4		
1 - Uniform (PSF)	0 to 12' 9"	2'	15.0	25.0	Roof Load

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	3'	23.8	


[•] ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width.
• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Job Notes	
	Job Notes

2nd Floor, 2H-3 (Low) 1 piece(s) 6 x 6 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	368 @ 0	5156 (1.50")	Passed (7%)		1.0 D (All Spans)
Shear (lbs)	334 @ 7"	3086	Passed (11%)	0.90	1.0 D (All Spans)
Moment (Ft-lbs)	1172 @ 6' 4 1/2"	2496	Passed (47%)	0.90	1.0 D (All Spans)
Vert Live Load Defl. (in)	0.000 @ 0	0.425	Passed (2L/999+)		1.0 D (All Spans)
Vert Total Load Defl. (in)	0.281 @ 6' 4 1/2"	0.313	Passed (L/544)		1.0 D (All Spans)
Lat Member Reaction (lbs)	534 @ 12' 9"	N/A	Passed (N/A)	1.60	1.0 D + 0.6 W
Lat Shear (lbs)	486 @ 7"	5485	Passed (9%)	1.60	1.0 D + 0.6 W
Lat Moment (Ft-lbs)	1703 @ mid-span	4437	Passed (38%)	1.60	1.0 D + 0.6 W
Lat Deflection (in)	0.286 @ mid-span	1.275	Passed (L/535)		1.0 D + 0.6 W
Bi-Axial Bending	0.65	1.00	Passed (65%)	1.60	1.0 D + 0.6 W

- Deflection criteria: LL (L/360) and TL (5/16").
- Lateral deflection criteria: Wind (L/120)
- Applicable calculations are based on NDS.
- This product has a square cross section. The analysis engine has checked both edge and plank orientations to allow for either installation.

	Bearing Length			Loads to		
Supports	Total	Available	Required	Dead	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	368	368	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	368	368	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

Lateral Connections								
Supports	Plate Size	Plate Material	Connector	Type/Model	Quantity	Nailing		
Left	2X	Hem Fir	Nails	10d (0.128" x 3") (End)	7			
Right	2X	Hem Fir	Nails	10d (0.128" x 3") (End)	7			

			Dead	
Vertical Loads	Location	Tributary Width	(0.90)	Comments
0 - Self Weight (PLF)	0 to 12' 9"	N/A	7.7	
1 - Uniform (PLF)	0 to 12' 9"	N/A	50.0	Window Load

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	6'	23.3	

- ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width.
 IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com	

2nd Floor, 2H-4 1 piece(s) 4 x 6 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	858 @ 0	3281 (1.50")	Passed (26%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	623 @ 7"	2657	Passed (23%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	912 @ 2' 1 1/2"	1969	Passed (46%)	1.15	1.0 D + 1.0 S (All Spans)
Vert Live Load Defl. (in)	0.024 @ 2' 1 1/2"	0.142	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Vert Total Load Defl. (in)	0.038 @ 2' 1 1/2"	0.213	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Lat Member Reaction (lbs)	68 @ 4' 3"	N/A	Passed (N/A)	1.60	1.0 D + 0.6 W
Lat Shear (lbs)	54 @ 5"	3696	Passed (1%)	1.60	1.0 D + 0.6 W
Lat Moment (Ft-lbs)	72 @ mid-span	1839	Passed (4%)	1.60	1.0 D + 0.6 W
Lat Deflection (in)	0.005 @ mid-span	0.425	Passed (L/999+)		1.0 D + 0.6 W
Bi-Axial Bending	0.31	1.00	Passed (31%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S

- Deflection criteria: LL (L/360) and TL (L/240).
- Lateral deflection criteria: Wind (L/120)
- A 0.5% decrease in the moment capacity has been added to account for lateral stability.
- Applicable calculations are based on NDS.

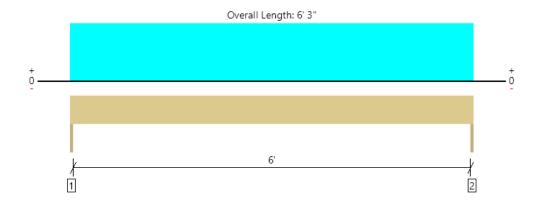
	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	318	540	858	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	318	540	858	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

Lateral Connections								
Supports	Plate Size	Plate Material	Connector	Type/Model	Quantity	Nailing		
Left	2X	Hem Fir	Nails	8d (0.113" x 2 1/2") (Toe)	2			
Right	2X	Hem Fir	Nails	8d (0.113" x 2 1/2") (Toe)	2			

Vertical Loads	Location	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 4' 3"	N/A	4.9		
1 - Uniform (PLF)	0 to 4' 3"	N/A	144.8	254.3	Linked from: RJ-2, Support 1

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	2'	26.5	


ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width.
 IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com		

2nd Floor, 2H-5 2 piece(s) 2 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	892 @ 0	2813 (1.50")	Passed (32%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	684 @ 8 3/4"	2610	Passed (26%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1394 @ 3' 1 1/2"	2277	Passed (61%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.039 @ 3' 1 1/2"	0.208	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.064 @ 3' 1 1/2"	0.313	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

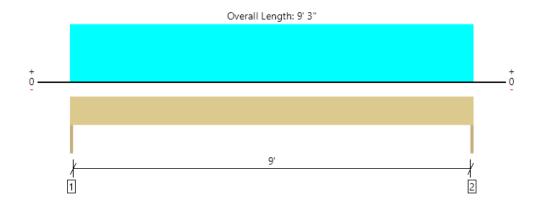
System: Wall
Member Type: Header
Building Use: Residential
Building Code: IBC 2018
Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- A 3.7% decrease in the moment capacity has been added to account for lateral stability.
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	345	547	892	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	345	547	892	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 6' 3"	N/A	5.5		
1 - Uniform (PSF)	0 to 6' 3"	7'	15.0	25.0	Roof Load


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com		

2nd Floor, 2H-6 1 piece(s) 5 1/2" x 7 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2174 @ 0	5363 (1.50")	Passed (41%)	- 1	1.0 D + 1.0 L (All Spans)
Shear (lbs)	1821 @ 9"	7288	Passed (25%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	5027 @ 4' 7 1/2"	10252	Passed (49%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.136 @ 4' 7 1/2"	0.308	Passed (L/816)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.222 @ 4' 7 1/2"	0.463	Passed (L/499)		1.0 D + 1.0 L (All Spans)

System: Wall
Member Type: Header
Building Use: Residential
Building Code: IBC 2018
Design Methodology: ASD

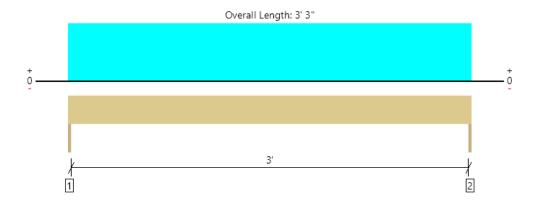
- Deflection criteria: LL (L/360) and TL (L/240).
- A 0.6% decrease in the moment capacity has been added to account for lateral stability.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 9' 3".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	844	1330	2174	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	844	1330	2174	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 9' 3"	N/A	10.0		
1 - Uniform (PSF)	0 to 9' 3"	11' 6"	15.0	25.0	Roof Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Harrison Kliegi L120 Engineering (425) 636-3313 hkliegi@l120engineering.com		

2nd Floor, 2H-7 2 piece(s) 2 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1049 @ 0	2813 (1.50")	Passed (37%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	578 @ 8 3/4"	2610	Passed (22%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	852 @ 1' 7 1/2"	2327	Passed (37%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.007 @ 1' 7 1/2"	0.108	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.011 @ 1' 7 1/2"	0.162	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System: Wall
Member Type: Header
Building Use: Residential
Building Code: IBC 2018
Design Methodology: ASD

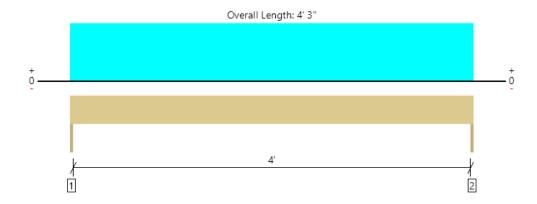
- Deflection criteria: LL (L/360) and TL (L/240).
- A 1.6% decrease in the moment capacity has been added to account for lateral stability.
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	399	650	1049	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	399	650	1049	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 3"	N/A	5.5		
1 - Uniform (PSF)	0 to 3' 3"	16'	15.0	25.0	Roof Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com		

2nd Floor, 2H-8 3 piece(s) 2 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2511 @ 0	4219 (1.50")	Passed (60%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1649 @ 8 3/4"	3915	Passed (42%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2668 @ 2' 1 1/2"	3490	Passed (76%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.023 @ 2' 1 1/2"	0.142	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.038 @ 2' 1 1/2"	0.213	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System: Wall
Member Type: Header
Building Use: Residential
Building Code: IBC 2018
Design Methodology: ASD

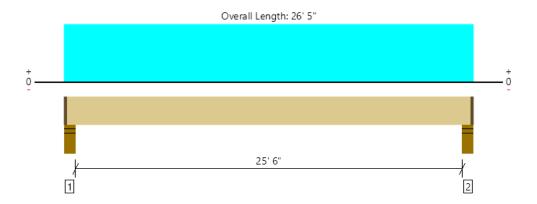
- Deflection criteria: LL (L/360) and TL (L/240).
- A 1.6% decrease in the moment capacity has been added to account for lateral stability.
- Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	970	1541	2511	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	970	1541	2511	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 4' 3"	N/A	8.3		
1 - Uniform (PSF)	0 to 4' 3"	29'	15.5	25.0	Roof Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com		

MEMBER REPORT PASSED

2nd Floor, 2B-8 1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3677 @ 4"	8505 (4.00")	Passed (43%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	2965 @ 1' 11 1/2"	18270	Passed (16%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	21842 @ 13' 2 1/2"	65497	Passed (33%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.181 @ 13' 2 1/2"	0.644	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.521 @ 13' 2 1/2"	1.288	Passed (L/593)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

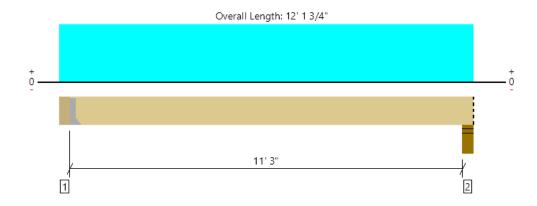
	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - HF	5.50"	4.00"	1.73"	2420	1057	660	3708	1 1/2" Rim Board
2 - Stud wall - HF	5.50"	4.00"	1.73"	2420	1057	660	3708	1 1/2" Rim Board

[•] Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	26' 2" o/c	
Bottom Edge (Lu)	26' 2" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	1 1/2" to 26' 3 1/2"	N/A	29.5			
1 - Uniform (PSF)	0 to 26' 5" (Front)	2'	15.0	40.0	-	Floor Load
2 - Uniform (PLF)	0 to 26' 5" (Top)	N/A	100.0	-	-	Wall Load Above
3 - Uniform (PSF)	0 to 26' 5" (Front)	2'	12.0	-	25.0	Roof Load


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com		

2nd Floor, 2B-9 1 piece(s) 3 1/2" x 18" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1687 @ 5 1/4"	3281 (1.50")	Passed (51%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	1242 @ 1' 11 1/4"	14007	Passed (9%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	4799 @ 6' 1 1/2"	50215	Passed (10%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.013 @ 6' 1 1/2"	0.284	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.038 @ 6' 1 1/2"	0.569	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Hanger on 18" PSL beam	5.25"	Hanger ¹	1.50"	1165	245	613	1809	See note 1
2 - Stud wall - HF	5.50"	5.50"	1.50"	1154	241	602	1786	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	11' 9" o/c	
Bottom Edge (Lu)	11' 9" o/c	

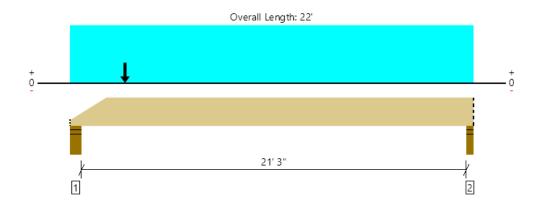
[•]Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-T	ie					
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	IUS3.56/14	2.00"	N/A	14-10d	2-10dx1.5	

[•] Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	5 1/4" to 12' 1 3/4"	N/A	19.7			
1 - Uniform (PSF)	0 to 12' 1 3/4" (Front)	1'	12.0	40.0	-	Floor Load
2 - Uniform (PSF)	0 to 12' 1 3/4" (Back)	2'	15.0	-	25.0	Low Roof Load
3 - Uniform (PLF)	0 to 12' 1 3/4" (Top)	N/A	100.0	-	-	Wall Load Above
4 - Uniform (PSF)	0 to 12' 1 3/4" (Top)	2'	15.0	-	25.0	Roof Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com	

MEMBER REPORT PASSED

2nd Floor, 2B-10 1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6218 @ 21' 10"	7442 (3.50")	Passed (84%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	7116 @ 1' 4 7/8"	14432	Passed (49%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	33891 @ 10' 9 3/16"	65497	Passed (52%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.356 @ 11' 3/4"	0.538	Passed (L/725)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.544 @ 10' 11 15/16"	1.075	Passed (L/474)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - HF	5.50"	5.50"	3.47"	2944	4426	1091	7370	Blocking
2 - Stud wall - HF	3.50"	3.50"	2.92"	2039	4179	622	6218	Blocking

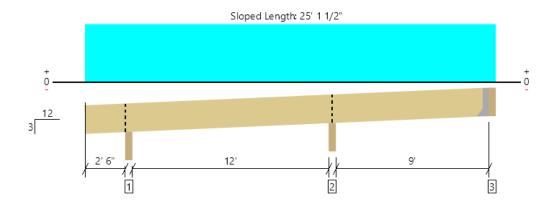
[•] Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	22' o/c	
Bottom Edge (Lu)	22' o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 22'	N/A	29.5			
1 - Uniform (PSF)	0 to 22' (Front)	9' 6"	12.0	40.0	-	Floor Load
2 - Uniform (PSF)	0 to 22' (Back)	2'	15.0	-	25.0	Low Roof Load
3 - Point (lb)	3' (Front)	N/A	1165	245	613	Linked from: 2B-9, Support 1

					Shear (lbs)			
Tapered End	Heel Height	Cut Length	Cut Slope	Location	Actual	Allowed	Result	Comments
Left End	10"	2' 8"	3/12	1' 4 7/8"	7116	14432	Passed (49%)	


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com		

Low Roof, LRJ-1 1 piece(s) 2 x 8 DF No.2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	718 @ 14' 11 1/4"	3382 (3.50")	Passed (21%)		1.0 D + 1.0 S (Adj Spans)
Shear (lbs)	346 @ 14' 2 7/16"	1501	Passed (23%)	1.15	1.0 D + 1.0 S (Adj Spans)
Moment (Ft-lbs)	-787 @ 14' 11 1/4"	1564	Passed (50%)	1.15	1.0 D + 1.0 S (Adj Spans)
Live Load Defl. (in)	0.131 @ 8' 4 1/8"	0.633	Passed (L/999+)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.196 @ 8' 3 13/16"	0.845	Passed (L/775)		1.0 D + 1.0 S (Alt Spans)

Member Length : 24' 11 11/16"

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 3/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Overhang deflection criteria: LL (2L/240) and TL (2L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Beveled Plate - DF	3.50"	3.50"	1.50"	163	270	433	Blocking
2 - Beveled Plate - DF	3.50"	3.50"	1.50"	271	447	718	Blocking
3 - Hanger on 7 1/4" DF ledgerOnMasonry	3.50"	Hanger ¹	1.50"	68	130	198	See note 1

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- $\bullet\,\,^{\text{1}}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	16' 9" o/c	
Bottom Edge (Lu)	12' 11" o/c	

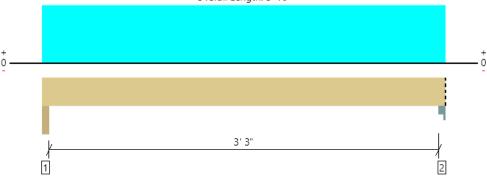
 $[\]bullet {\sf Maximum\ allowable\ bracing\ intervals\ based\ on\ applied\ load}.$

Connector: Simpson Strong-1	ie -					
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
3 - Face Mount Hanger	LRU26Z	1.94"	N/A	4-10dx1.5	5-10d	

[•] Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 24' 4 1/2"	16"	15.0	25.0	Roof Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com		

Low Roof, LRB-1 1 piece(s) 4 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1044 @ 2"	7656 (3.50")	Passed (14%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	556 @ 10 3/4"	3502	Passed (16%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	834 @ 1' 11"	3438	Passed (24%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.006 @ 1' 11"	0.175	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.010 @ 1' 11"	0.233	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

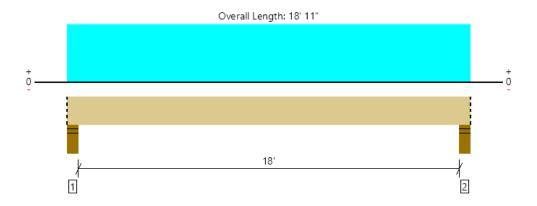
	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	3.50"	3.50"	1.50"	402	643	1044	None
2 - Column Cap - steel	3.50"	3.50"	1.50"	402	643	1044	Blocking

[•] Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 10" o/c	
Bottom Edge (Lu)	3' 10" o/c	

[•]Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 3' 10"	N/A	6.4		
1 - Uniform (PLF)	0 to 3' 10" (Top)	N/A	203.3	335.3	Linked from: LRJ-1, Support 2


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com		

1st Floor, 1B-1 (Garage Header) 1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	833 @ 4"	12251 (5.50")	Passed (7%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	715 @ 1' 4"	11733	Passed (6%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	3665 @ 9' 5 1/2"	23244	Passed (16%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.131 @ 9' 5 1/2"	0.456	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.230 @ 9' 5 1/2"	0.913	Passed (L/952)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- . Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 18' 3".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

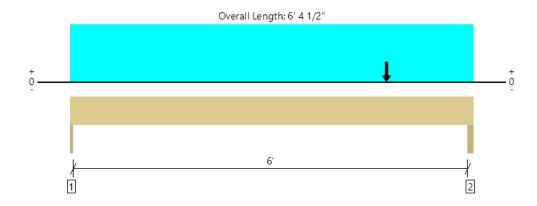
	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - HF	5.50"	5.50"	1.50"	360	473	833	Blocking
2 - Stud wall - HF	5.50"	5.50"	1.50"	360	473	833	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	18' 11" o/c	
Bottom Edge (Lu)	18' 11" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 18' 11"	N/A	14.0		
1 - Uniform (PSF)	0 to 18' 11" (Top)	2'	12.0	25.0	Low Roof Load


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com		

1st Floor, 1H-1 1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7300 @ 6' 3"	10725 (3.00")	Passed (68%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	6868 @ 5' 4 1/2"	8745	Passed (79%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	8720 @ 5'	14774	Passed (59%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.052 @ 3' 4 9/16"	0.208	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.087 @ 3' 4 5/8"	0.313	Passed (L/865)		1.0 D + 1.0 L (All Spans)

System: Wall Member Type: Header Building Use: Residential Building Code: IBC 2018 Design Methodology: ASD

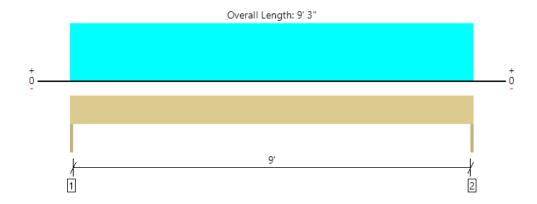
- Deflection criteria: LL (L/360) and TL (L/240).
- A 0.5% decrease in the moment capacity has been added to account for lateral stability.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 6' 3".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	1119	1706	218	2824	None
2 - Trimmer - HF	3.00"	3.00"	2.04"	2906	4394	873	7300	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 6' 4 1/2"	N/A	12.0			
1 - Uniform (PSF)	0 to 6' 4 1/2"	10' 6"	15.0	25.0	-	Low Roof Load
2 - Point (lb)	5'	N/A	2944	4426	1091	Linked from: 2B-10, Support 1

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	

1st Floor, 1H-2 1 piece(s) 6 x 10 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2226 @ 0	5156 (1.50")	Passed (43%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1785 @ 11"	5922	Passed (30%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	5147 @ 4' 7 1/2"	5998	Passed (86%)	1.00	1.0 D + 1.0 L (All Spans)
Vert Live Load Defl. (in)	0.116 @ 4' 7 1/2"	0.308	Passed (L/956)		1.0 D + 1.0 L (All Spans)
Vert Total Load Defl. (in)	0.155 @ 4' 7 1/2"	0.463	Passed (L/715)		1.0 D + 1.0 L (All Spans)
Lat Member Reaction (lbs)	207 @ 9' 3"	N/A	Passed (N/A)	1.60	1.0 D + 0.6 W
Lat Shear (lbs)	181 @ 7"	9475	Passed (2%)	1.60	1.0 D + 0.6 W
Lat Moment (Ft-lbs)	478 @ mid-span	5588	Passed (9%)	1.60	1.0 D + 0.6 W
Lat Deflection (in)	0.030 @ mid-span	0.925	Passed (L/999+)		1.0 D + 0.6 W
Bi-Axial Bending	0.50	1.00	Passed (50%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 Lr

System : Wall Member Type : Header Building Use : Residential Building Code: IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Lateral deflection criteria: Wind (L/120)
- A 0.6% decrease in the moment capacity has been added to account for lateral stability.
- Lumber grading provisions must be extended over the length of the member per NDS 4.2.5.5.
- Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	561	1665	2226	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	561	1665	2226	None

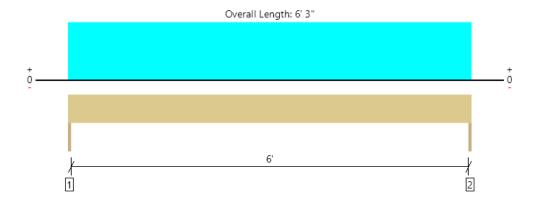
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

Lateral Connections									
Supports	Plate Size	Plate Material	Connector	Type/Model	Quantity	Nailing			
Left	2X	Hem Fir	Nails	8d (0.113" x 2 1/2") (Toe)	3				
Right	2X	Hem Fir	Nails	8d (0.113" x 2 1/2") (Toe)	3				

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 9' 3"	N/A	13.2		
1 - Uniform (PSF)	0 to 9' 3"	9'	12.0	40.0	Floor Load

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	3'	24.9	

[•] ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width.


• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com		

1st Floor, 1H-3 2 piece(s) 2 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	251 @ 0	2813 (1.50")	Passed (9%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	192 @ 8 3/4"	3002	Passed (6%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	392 @ 3' 1 1/2"	2592	Passed (15%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.011 @ 3' 1 1/2"	0.208	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.018 @ 3' 1 1/2"	0.313	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

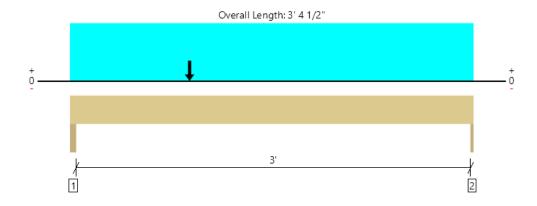
System: Wall Member Type: Header Building Use: Residential Building Code: IBC 2018 Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- A 4.7% decrease in the moment capacity has been added to account for lateral stability.
- Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	95	156	251	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	95	156	251	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 6' 3"	N/A	5.5		
1 - Uniform (PSF)	0 to 6' 3"	2'	12.4	25.0	Low Roof Load


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	

1st Floor, 1H-4 3 piece(s) 2 x 10 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2770 @ 3' 4 1/2"	4219 (1.50")	Passed (66%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	3270 @ 1' 1/4"	4995	Passed (65%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	3396 @ 1'	5219	Passed (65%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.007 @ 1' 8 9/16"	0.108	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.013 @ 1' 8 3/8"	0.162	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

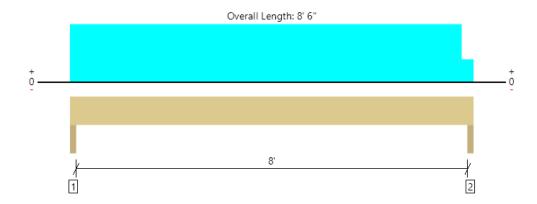
System: Wall Member Type: Header Building Use: Residential Building Code: IBC 2018 Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- A 1.4% decrease in the moment capacity has been added to account for lateral stability.
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - HF	3.00"	3.00"	1.61"	2238	2277	482	4516	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	1088	1682	178	2770	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 3' 4 1/2"	N/A	10.6			
1 - Uniform (PSF)	0 to 3' 4 1/2"	21' 6"	12.0	40.0	-	Floor Load
2 - Point (lb)	1'	N/A	2420	1057	660	Linked from: 2B-8, Support 1


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com		

1st Floor, 1H-5 1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5734 @ 1 1/2"	10725 (3.00")	Passed (53%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	4218 @ 7' 4 1/2"	11733	Passed (36%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Pos Moment (Ft-lbs)	11478 @ 4' 3"	23024	Passed (50%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.082 @ 4' 3"	0.275	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.147 @ 4' 3"	0.412	Passed (L/672)		1.0 D + 0.75 L + 0.75 S (All Spans)

System: Wall
Member Type: Header
Building Use: Residential
Building Code: IBC 2018
Design Methodology: ASD

PASSED

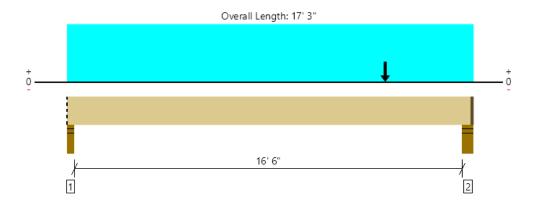
- Deflection criteria: LL (L/360) and TL (L/240).
- A 0.9% decrease in the moment capacity has been added to account for lateral stability.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 8' 3".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - HF	3.00"	3.00"	1.60"	2550	1700	2546	5734	None
2 - Trimmer - HF	3.00"	3.00"	1.55"	2459	1700	2398	5532	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 6"	N/A	14.0			
1 - Uniform (PSF)	0 to 8' 6"	10'	12.0	40.0	-	Floor Load
2 - Uniform (PLF)	0 to 8' 6"	N/A	100.0	-	-	Wall Load Above
3 - Uniform (PLF)	0 to 8' 3"	N/A	366.0	-	599.3	Linked from: RJ-2, Support 2

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com	

MEMBER REPORT PASSED

Basement, BB-1 1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5290 @ 16' 11"	8505 (4.00")	Passed (62%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	5159 @ 15' 3 1/2"	21011	Passed (25%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	17605 @ 13' 6"	75322	Passed (23%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.066 @ 9' 5 1/8"	0.419	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.142 @ 9' 4 7/8"	0.837	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- · Allowed moment does not reflect the adjustment for the beam stability factor.

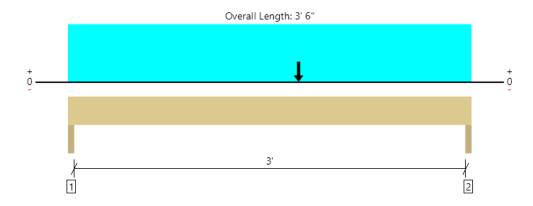
	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.50"	982	722	381	1809	Blocking
2 - Stud wall - HF	5.50"	4.00"	2.49"	2806	1833	1486	5295	1 1/2" Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.
- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	17' 2" o/c	
Bottom Edge (Lu)	17' 2" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 17' 1 1/2"	N/A	29.5			
1 - Uniform (PSF)	0 to 17' 3" (Front)	1'	12.0	40.0	-	Floor Load
2 - Point (lb)	13' 6" (Top)	N/A	1039	478	299	Linked from: 2B-3, Support 2
3 - Point (lb)	13' 6" (Top)	N/A	2036	1387	1568	Linked from: 2B-5, Support 2


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com		

Basement, BH-1 1 piece(s) 3 1/2" x 7 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4685 @ 3' 4 1/2"	6825 (3.00")	Passed (69%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	3905 @ 2' 7 1/2"	4638	Passed (84%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	5446 @ 2'	6525	Passed (83%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.028 @ 1' 9 3/16"	0.108	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.039 @ 1' 9 3/16"	0.162	Passed (L/991)		1.0 D + 1.0 L (All Spans)

System: Wall
Member Type: Header
Building Use: Residential
Building Code: IBC 2018
Design Methodology: ASD

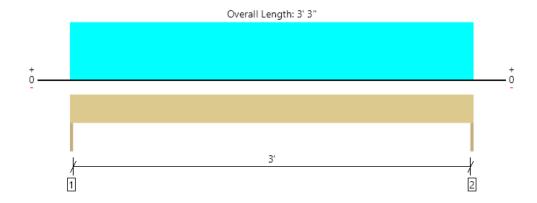
- Deflection criteria: LL (L/360) and TL (L/240).
- A 0.6% decrease in the moment capacity has been added to account for lateral stability.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 3' 3".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	3.00"	3.00"	1.69"	1060	2791	3851	None
2 - Trimmer - HF	3.00"	3.00"	2.06"	1312	3373	4685	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 6"	N/A	6.4		
1 - Uniform (PSF)	0 to 3' 6"	17'	12.0	40.0	Floor Load
2 - Point (lb)	2'	N/A	1636	3783	Linked from: 2B-1, Support 1

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	

Basement, BH-2 2 piece(s) 2 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	981 @ 0	2813 (1.50")	Passed (35%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	541 @ 8 3/4"	2610	Passed (21%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	797 @ 1' 7 1/2"	2327	Passed (34%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.008 @ 1' 7 1/2"	0.108	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.010 @ 1' 7 1/2"	0.162	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System: Wall
Member Type: Header
Building Use: Residential
Building Code: IBC 2018
Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- A 1.6% decrease in the moment capacity has been added to account for lateral stability.
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	233	748	981	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	233	748	981	None

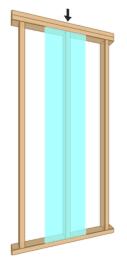
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 3"	N/A	5.5		
1 - Uniform (PSF)	0 to 3' 3"	11' 6"	12.0	40.0	Floor Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com		



MEMBER REPORT PASSED

1st Floor, Balloon Framed Wall Check 1 piece(s) 2 x 6 HF No.2 @ 12" OC

Wall Height: 20' Member Height: 19' 7 1/2" O. C. Spacing: 12.00"

Drawing is Conceptual

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	43	50	Passed (86%)		
Compression (lbs)	440	1690	Passed (26%)	1.15	1.0 D + 1.0 S
Plate Bearing (lbs)	440	4177	Passed (11%)		1.0 D + 1.0 S
Lateral Reaction (lbs)	132			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	126	1320	Passed (10%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	649 @ mid-span	1264	Passed (51%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	1.16 @ mid-span	1.96	Passed (L/202)		1.0 D + 0.6 W
Bending/Compression	0.58	1	Passed (58%)	1.60	1.0 D + 0.6 W

- · Lateral deflection criteria: Wind (L/120)
- Input axial load eccentricity for the design is zero
- Applicable calculations are based on NDS.
- A bearing area factor of 1.25 has been applied to base plate bearing capacity.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.

Supports	Туре	Material
Тор	Dbl 2X	Hem Fir
Base	2X	Hem Fir

System : Wall Member Type : Stud Building Code : IBC 2018 Design Methodology : ASD

Max Unbraced Length	Comments
1'	

Lateral Connections					
Supports	Connector	Type/Model	Quantity	Connector Nailing	
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A	
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A	

[•] Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly

Vertical Load	Spacing	Dead (0.90)	Snow (1.15)	Comments
1 - Point (lb)	N/A	165	275	Roof Load DL= 15psf * 11 ft SL= 25psf * 11 ft

			Wind	
Lateral Load	Location	Spacing	(1.60)	Comments
1 - Uniform (PSF)	Full Length	12.00"	22.5	

[•] ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width.

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com		

[•] IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

LATERAL CALCULATIONS

SHEAR-WALL REFERENCE PER PLAN

Project Number:	Plan Name:	Sheet Number:
S22201 Forest Creek Estates Lot 2		DC
Engineer:	Specifics:	Date:
HK	Design Criteria	11/10/2022

Gravity Criteria: Code: IBC 2018

ROOF SYSTEM			
Snow	25.0	psf	
Dead Load:			
Composite Roofing	2.0	psf	
19/32" Plywood Sheathing	2.5	psf	
Trusses at 24" o.c.	3.0	psf	
Insulation	1.8	psf	
(2) Layers 5/8" GWB	4.4	psf	
Misc/Mech	1.3	psf	
Total Total	15.0	psf	

FLOOR SYSTEM			
Live Load:			
Residential	40.0	psf	
Dead Load:			
Flooring	3.0	psf	
3/4" T & G Plywood	2.5	psf	
Floor Joists at 16" o.c.	2.5	psf	
Insulation	0.5	psf	
(1) Layers 5/8" GWB	2.2	psf	
Miscellaneous	1.3	psf	
Total	12.0	psf	

EXTERIOR WALL SYSTEM			
2x6 at 16" o.c.	1.7	psf	
Insulation	1.0	psf	
1/2" Plywood Sheathing	1.5	psf	
(2) layers 5/8" GWB	4.4	psf	
Misc	3.4	psf	
Total Total	12.0	psf	

INTERIOR WALL SYSTEM			
2x4 at 16" o.c.	1.1	psf	
Insulation	0.5	psf	
(2) Layers 5/8" GWB	4.4	psf	
Misc	2.0	psf	
Total	8.0	psf	

SEISMIC PARAMETERS:

Code Reference: ASCE 7-16

R = 6.5 Bearing Wall System, Wood Structural Panel Walls

Mapped Spectral Acceleration, Ss = 1.45Mapped Spectral Acceleration, S1 = 0.503Soil Site Class = D

WIND PARAMETERS:

Code Reference: ASCE 7-16

Basic Wind Speed (3 second Gust) = 100 mph

Exposure: \mathbf{B} $\mathbf{Kzt} = \mathbf{1.00}$

SOIL PARAMETERS:

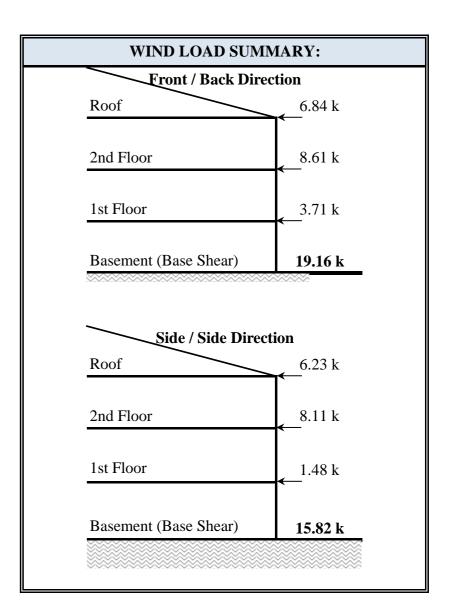
Soil Bearing Pressure = 1,500 psf competent native soil or structural fill 1/3 increase for short-term wind or seismic loading is acceptable

Frost Depth = 18 in

Lateral Wall Pressures:

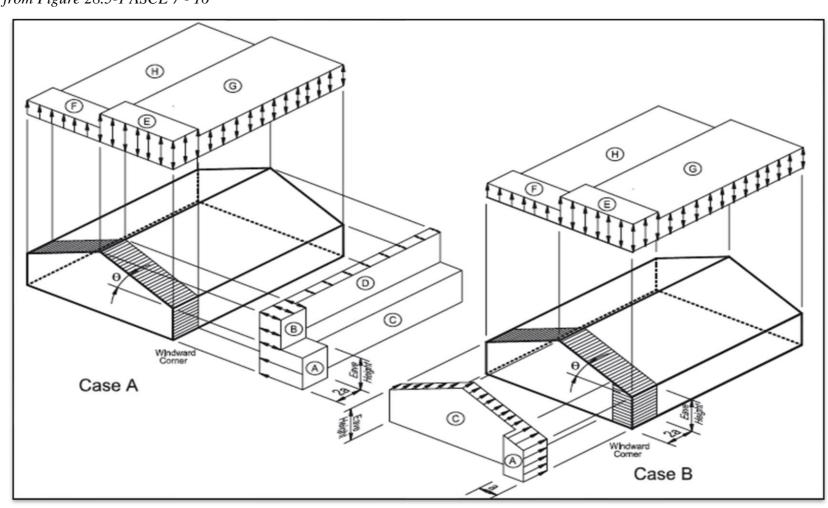
Unrestrained Active Pressure = 35 pcf Cantilevered walls

Restrained Active Pressure = 50 pcf Plate Wall Design/Tank Walls


Passive Pressure = 250 pcf

Soil Friction Coeff. = 0.35

Project Number:	Plan:	Sheet Number:
S22201	Forest Creek Estates Lot 2	L1
Engineer:	Specifics:	Date
НК	WIND FORCES	11/10/2022


IBC 2018 Section 1609 → ASCE 7-16 Section 28.5 - Simplified Procedure → Main Wind-Force Resisting System

LOAD CRITERIA:		
Basic Wind Speed, $V_s =$	100 mph	(ASCE 7-16, Section 26.5)
Exposure =	В	(ASCE 7-16, Section 26.7)
BUILDING GEOMETRY:		
Roof Slope =	3.00:12	= 14.04 degrees
Loads From Front/Back - Width (ft)=	71.00 ft	Roof: Gable
Loads From Side - Width (ft) =	65.00 ft	Roof: Gable
Average Eave Height =	25.00 ft	
Mean Roof Ht., h =	30.00 ft	(ASCE 7-16, Figure 27.5-2)
Edge Strip Width, a =	6.5 ft	(ASCE 7-16, Figure 28.5-1)
End Zone Width, 2a =	13.00 ft	(ASCE 7-16, Figure 28.5-1)
DESIGN:		
Topographic Factor, Kzt =	1.00	(ASCE 7-16, Section 26.8)
Adjustment Factor, $\lambda =$	1.05	(ASCE 7-16, Figure 28.5-1)

		SI	MPLIFIE	ED DESI	GN WINI	D PRESSU	URE, P _{S30}	(psf)				
				(Ex	xposure B at h	a=30 ft.						
Basic Wind	Roof		ZONES*									
Speed, Vs	Angle	Load Case		Horizont	tal Pressure			Vertica	al Presssure		Overh	ang
(mph)	(Degrees)		A	В	C	D	E	F	G	Н	E _{OH}	G _{OH}
100	14.04	A	19.90	-6.60	13.30	-3.80	-19.10	-12.40	-13.30	-9.50	-26.70	-20.90

^{*} Values Interpolated from Figure 28.5-1 ASCE 7 - 16

Project Number:	Plan:	Sheet Number:
S22201	Forest Creek Estates Lot 2	L1
Engineer:	Specifics:	Date
нк	WIND FORCES	11/10/2022

IBC 2018 Section 1609 \rightarrow ASCE 7-16 Section 28.5 - Simplified Procedure \rightarrow Main Wind-Force Resisting System

Н	ORIZONTAL	LOADS ((psf)	MIN. LO	ADS (psf)
	$p_{s} = \lambda * Ks$	zt*Ps30		Per ASCE 7	7-16, 28.6.3
End	zone	Inte	rior zone	D C	XX7 11
A (Wall)	B (Roof)	C (Wall)	D (Roof)	Roof	Wall
20.90	-6.93	13.97	-3.99	8.0	16.0

Full Impact at Basement? YES (No = 1/4 Impact)

	ASD WIND	FORCES	: FRON	T / BACK	K LOADI	NG DIREC	CTION			
			11-1-1-4		End Zone		Interior zone		Force	Min Force
	Location	Width	Height	Plane	Length	Pressure (W)	Length	Pressure (W)	0.6 ω*W	0.6 ω*W
		(ft)	(ft)		(ft)	(psf)	(ft)	(psf)	(kips)	(kips)
<u></u>	"Height" of Roof to Plate (see note)	72.0	3.00	(roof)	13.0	20.90	59.0	13.97	2.56	1.35
ROOF	Plate to Mid 2nd LVL	72.0	5.00	(wall)	13.0	20.90	59.0	13.97	4.27	4.49
2 4								$\Sigma =$	6.84	5.84
OR	Mid 2nd LVL to Floor	72.0	5.00	(wall)	13.0	20.90	59.0	13.97	4.27	4.49
FLOOR	"Height" Low-Roof to Plate (see note)	0.0	0.00	(roof)	13.0	20.90	-13.0	13.97	0.00	0.00
	Floor to Mid 1st LVL	66.0	5.00	(wall)	13.0	20.90	53.0	13.97	3.95	4.12
2nd								$\Sigma =$	8.22	8.61
)R	Mid 1st LVL to Floor	53.0	5.00	(wall)	13.0	20.90	40.0	13.97	3.24	3.31
FLOOR	"Height" Low-Roof to Plate (see note)	0.0	0.00	(roof)	13.0	20.90	-13.0	13.97	0.00	0.00
	Floor to Mid Basement LVL	66.0	5.00	(wall)	13.0	20.90	53.0	13.97	3.95	4.12
1st								$\Sigma =$	3.59	3.71
						Tota	l Wind Ba	se Shear (kips)	18.65	18.16

Full Impact at Basement? NO (No = 1/4 Impact)

	ASD WINI	FORCI	ES: SID	E / SIDE I	LOADIN	G DIRECT	ION			
		Width	Haiaht		Enc	Zone	Inte	erior zone	Force	Min Force
	Location	Width	Height	Plane	Length	Pressure (W)	Length	Pressure (W)	0.6 ω*W	0.6 ω*W
		(ft)	(ft)		(ft)	(psf)	(ft)	(psf)	kips	kips
<u> </u>	"Height" of Roof to Plate (see note)	65.0	3.00	(roof)	13.0	20.90	52.0	13.97	2.33	1.22
ROOF	Plate to Mid 2nd LVL	65.0	5.00	(wall)	13.0	20.90	52.0	13.97	3.89	4.06
~								$\Sigma =$	6.23	5.27
OR	Mid 2nd LVL to Floor	65.0	5.00	(wall)	13.0	20.90	52.0	13.97	3.89	4.06
FLOOR	"Height" Low-Roof to Plate (see note)	0.0	0.00	(roof)	13.0	20.90	-13.0	13.97	0.00	0.00
	Floor to Mid 1st LVL	65.0	5.00	(wall)	13.0	20.90	52.0	13.97	3.89	4.06
2nd								$\Sigma =$	7.78	8.11
)R	Mid 1st LVL to Floor	65.0	5.00	(wall)	13.0	20.90	52.0	13.97	3.89	4.06
FLOOR	"Height" Low-Roof to Plate (see note)	0.0	0.00	(roof)	13.0	20.90	-13.0	13.97	0.00	0.00
	Floor to Mid Basement LVL	30.0	5.00	(wall)	13.0	20.90	17.0	13.97	1.99	1.87
1st								$\Sigma =$	1.47	1.48
						Tota	l Wind Ba	se Shear (kips)	15.48	14.87

Project Number:	Plan Name:	Sheet Number:
S22201	Forest Creek Estates Lot 2	L2
Engineer:	Specifics:	Date:
HK	SEISMIC WEIGHTS	11/10/2022

Unit Weights (psf) Seismic Weights include: (REF §12.7)

Roof: 15 psf 25% of storage Live loads

Floor: 12 psf Actual partition weight or 10 psf min if applicable

Exterior Wall: 12 psf Operating weight of permenant equipment

Interior Wall: 8 psf 20% of uniform design snow loads for areas where Pf > 30 psf

LEVEL	ITEM	AREA / LENGTH	HEIGHT (ft)	UNIT WEIGHT (psf)		Item Total Weight. (lbs)	Sub- Total (kips)	Average Pressure (psf)
ROOF:								
	Roof	3,855	1.05	15	=	60,854		
	Ext. Wall Below	285	5.00	12	=	17,100		
	Corridor Wall Below	125	5.00	8	=	5,000		
							83	22
2nd FLO	OR:							
	Floor	2,670	1.00	12	=	32,040		
	Low Roof	730	1.05	15	=	11,524		
	Ext. Wall Above	285	5.00	12	=	17,100		
	Corridor Wall Above	125	5.00	8	=	5,000		
	Ext. Wall Below	285	4.50	12	=	15,390		
	Corridor Wall Below	100	4.50	8	=	3,600		
						·	85	25
1st FLOC	OR:							
	Floor	1,930	1.00	12	=	23,160		
	Low Roof	0	1.05	15	=	0		
	Ext. Wall Above	285	4.50	12	=	15,390		
	Corridor Wall Above	100	4.50	8	=	3,600		
	Ext. Wall Below	115	4.50	12	=	6,210		
	Corridor Wall Below	75	4.50	8	=	2,700		
						· <u>-</u>	51	26
BASEME	ENT:							
	Ext. Wall Above	115	4.50	12	=	6,210		
	Corridor Wall Above	75	4.50	8	=	2,700		
				-		_	9	
							-	

STRUCTURE WEIGHT FOR SEISMIC BASE SHEAR: 219 kips

TOTAL WEIGHT OF STRUCTURE: 228 kips

(Includes Basement Dead Load)

Project Number:	Plan Name:	Sheet Number:
S22201	Forest Creek Estates Lot 2	L3
Engineer:	Specifics:	Date:
нк	SEISMIC FORCES	11/10/2022

Equivelant Lateral Force Analysis per IBC 2018 1613.1 →ASCE 7-16 Table 12.6-1 →Sec 12.8

Data generated by: Seismic Design Values for Buildings

"Java Ground Motion Parameter Calculation"

(ASCE 7 EQ 12.8.-5)

 $S_1 =$ 0.503 Maps $S_{DS} =$ 1.16 (ASCE 7 EQ 11.4.-3) $S_{D1} =$ 0.4024 (ASCE 7 EQ 11.4.-4) Seismic Importance Factor = 1.00 (ASCE 7 Table 11.5-1) Seismic Design Category = D (ASCE 7 Table 11.6-1 & 11.6.2) Response Modification Factor, R = 6.5 (ASCE 7 Table 12.2-1)

Seismic Force-Resisting System Description = A.13 - light framed walls

Building Height,
$$h_n = 30.0$$
 ft

Building Period Coefficient, $C_T = 0.020$ (ASCE 7 Table 12.8.-2)

Approx. Fundamental Period, $T_a = 0.256$ ($C_{T*}(h_n^{0.75})$ (ASCE 7 EQ 12.8.-7)

Approx. Fundamental Period, $T_L = 6.0$ sec (ASCE 7 11.4.6)

Seismic Response Coefficient

$$C_s = S_{DS}/(R/I)$$
 $C_s = 0.178$ (ASCE 7 EQ 12.8.-2)

Seismic Response Coefficient, Maximum

$$\begin{split} &C_{s,\,MAX} = S_{D1}/(T^*R/I) & C_{s,\,MAX} = & _{0.241} & T \leq T_L & _{(ASCE~7~EQ~12.8.-3)} \\ &C_{s,\,MAX} = S_{D1}~T_L/(T^2*R/I) & C_{s,\,MAX} = & _{NA} & T > T_L & _{(ASCE~7~EQ~12.8.-4)} \end{split}$$

0.010

 $C_{s. MIN} =$

Seismic Response Coefficient, Minimum

 $C_{s, MIN} = 0.01$

Factor for Alternate Basic Load conbinations - 2018 IBC

$$E_H/1.4 = 27.9$$
 kips IBC 2018 1605.3.2
k = 1 (ASCE 7 12.8.3)

		VERT	ICAL DISTRI	BUTION (I	Per ASCE 7	' - 12.8.3)		
		Story	Total	Story		Vert Dist	Story	Factored Story
	Area	Height	Height	Weight		Factor	Force	Force (ASD)
Floor		Н	h_x	W_{X}	$w_x h_x^{\kappa}$	Cvx	Fx	Fx $\rho/1.4 = E_H/1.4$
	(ft ⁻)	(ft)	(ft)	(kips)	(k-ft)		(kips)	(kips)
Roof	3,855	10.00	29.00	83	2,406	0.54	21.0	15.0
2nd	2,670	10.00	19.00	85	1,608	0.36	14.0	10.0
1st	1,930	9.00	9.00	51	460	0.10	4.0	2.9
				Sum =	4,474	1.000	39.0	27.9

Project Number:	Plan Name:	Sheet Number:
S22201	Forest Creek Estates Lot 2	L4
Engineer:	Specifics:	Date:
НК	DESIGN LOADS	11/10/2022

		FR	ONT / BA	CK DIRECTION	
Wind	Force	Seismic	c Force		
$0.6\omega*W$	$Y_{F/B}$ (kips)	E/1.4	(kips)		Conomina Fores
Per Level	C	Per Level	C.		Governing Force:
6.84	Sum	14.99	Sum	ROOF	14.99 k Seismic
8.61	6.84	10.02	14.99	2nd FLOOR	10.02 k Seismic
3.71	15.45	2.86	25.01	1st FLOOR	3.71 k Wind
	19.16		27.87	BASEMENT	Base Shear:
				************	27.87 k Seismic

		S	SIDE / SI	E DIRECTION	
Wind 0.6 ω * V	Force V _S (kips)	Seismic			Carraming Farrage
Per Level 6.23	Sum	Per Level 14.99	Sum	ROOF	Governing Force: 14.99 k Seismic
8.11	6.23	10.02	14.99	2nd FLOOR	10.02 k Seismic
1.48	14.34	2.86	25.01	1st FLOOR	2.86 k Seismic
	15.82		27.87	BASEMENT	Base Shear:
				***************************************	27.87 k Seismic

											Notes:						_												
Project N	umber:		Plan Name:					Sheet Number:		1		_	e-Transfer should 2018, Table 4.3.4	meet a minimum hei	ght to width														
-	S2220	1			est Creek I	Estates Lot 2			L5			`		for walls w/o opening	gs (increased shear							RED = U	pdate Formula a	as required - I	mportant				
Engineer			Specifics:	61	11 6			Date:		1	design value	s per SDPWS 2	018, Table 4.3.4)									BLUE =	Review and upd	late as require	d - Typical Input				
	HK			She	ar walls (1	front/back)		11/1	0/2022	J	* Shear panel	height is height	to underside or ro	of or floor framing.															
2nd Sto	ry Walls	(Front - I	Back Direct	tion)					Stud Species	s HF]						y Walls (Front -		ion)				
			Stor	ry shear(kips) =	14.99			Governing For	ce (F/B Direction) =	Seismic						_						Hold dov	vns and windov	<u>v straps</u>					
				tory height (ft) = anel height (ft) =	10.00 9.00	100% story shear	T She		or (F/B Direction) = (Wind or Seismic) =	= 0.90 = Seismic	IBC 2018 Equ	nation 16-22																	
		То		m Area (sq ft) =		YES			load balance check =																			_	
Story	Wall	Wall	Opening	Opening	Opening (max)	Plate to	Effective	Trib. Area	Percent	Effective	Story	Sum	Panel	Height/Width Reduction (%)	Design Panel	Wall	Roof DL			Sum	OTM	RM	Resultant	HD	HD/Strap to	HD location	Resultant	Force at Window	Window Strap
	Mark	L(ft)	Width (ft) 5.00	Height (ft)	to Edge (ft)	Opening (ft)	Length (ft)	(sq ft) 400.00	Sharing (%)	Trib. Width	V(kips)	V(kips)	Shear (plf)	R = 2*L/H	Shear (plf)	Type	Trib(ft)			DL(klf)	(k-ft)		HD(kips)	TYPE	DF or HF?	Edge/Interior?	HD No HD	(Kips)	
2	2.1	19.00 12.50	3.00	5.00	3.00	2.00	12.50	1355.00	1.00 0.51	400.00 691.33	1.56 2.69	1.56 2.69	111 215	1.00 1.00	111 215	SW6 SW6	2.00 3.00	0.14 0.15		0.14 0.15	15.6 26.9	22.4 10.8	-0.37 1.34	flr-flr flr-flr	HF	Edge	No HD MST37	0.75 1.34	CS16 CS16
2	2.2	26.00	14.00	6.00	2.50	2.00	12.00	1355.00	0.49	663.67	2.58	2.58	215	1.00	215	SW6	4.00	0.17		0.17	25.8	51.1	-0.99	flr-beam	HF	Edge	No HD	0.00	No strap
2	3.1 4.1	17.50 15.33					17.50 15.33	800.00 1300.00	1.00 0.52	800.00 679.47	3.11 2.64	3.11 2.64	178 172	1.00 1.00	178 172	SW6 SW6	5.00 6.00	0.18 0.20		0.18 0.20	31.1 26.4	25.2 20.9	0.35 0.37	flr-beam flr-beam	HF HF	Edge Edge	No HD No HD	0.00 0.00	No strap No strap
2	4.2	26.00	12.00	6.00	2.50	2.00	14.00	1300.00	0.48	620.53	2.41	2.41	172	1.00	172	SW6	7.00	0.21		0.21	24.1	64.8	-1.59	flr-beam	HF	Edge	No HD	1.08	CS16
	S =	= 116.33				Total OSB wall length =	38.50	1	S =	= 3855.00	14.99	14.99	OK	Total OSB Capaci	ty 14.99	<u> </u>													
1 4 04			D 1 D' 4'			(feet)					1.177	2.000	022	(kips)	3, 1,	_						4 . 6.							
1st Stol	y Walls ((Front - B	Back Direction	ion)			She	ear panel capacity	(Wind or Seismic) =	Seismic													Walls (Front - vns and windov		<u>on)</u>				
		7	St Shear Pa	ry shear(kips) = tory height (ft) = anel height (ft) = agm width (ft) =	10.08 9.08						mulated Shear = d balance check =																		
Story	Wall	Wall	Opening	Opening	Opening (max)		Effective	Trib. Width	Percent	Effective	Story	Sum	Panel	Height/Width Reduction (%)										HD			Resultant	Force at Window	Window Strap
	Mark 1.1	7.25	Width (ft)	Height (ft)	to Edge (ft)	Opening (ft)	7.25	(ft) 690.00	Sharing (%) 0.46	Trib. Width 317.62	V(kips) 0.94	V(kips) 1.65	Shear (plf)	R = 2*L/H 1.00	Shear (plf)	Type SW6	2.00	DL(klf) 0.14	Stacks? YES	DL(klf) 0.28	(k-ft)	(k-ft)	HD(kips)	TYPE flr-flr	DF or HF?	Edge/Interior?	MST37	(Kips) 0.00	No atmos
1	1.1	14.50	6.00	5.50	2.00	1.50	8.50	690.00	0.54	372.38	1.10	1.03	228	1.00	228	SW6	2.00	0.14	NO	0.28	19.5	13.1	0.46	flr-flr	HF	Edge Edge	No HD	1.29	No strap CS16
1	2.1	12.00					12.00	680.00	0.71	480.00	1.41	4.10	342	1.00	342	SW4	3.00	0.15	YES	0.32	41.4	9.9	2.73	flr-flr	HF	Edge	MST48	0.00	No strap
1	2.2	5.00					5.00	680.00	0.29	200.00	0.59	3.17	634	1.00	634	2W4	4.00	0.17	NO	0.17	32.0	1.9	6.68	flr-conc	HF	Edge	HDU11	0.00	No strap
1	3.1	12.00					12.00	900.00	0.51	459.57	1.35	2.94	245	1.00	245	SW4	5.00	0.18	NO	0.18	29.7	11.9	1.55	flr-flr	HF	Edge	MST37	0.00	No strap
1	3.2	11.50					11.50	900.00	0.49	440.43	1.30	2.82	245	1.00	245	SW4	6.00	0.20	NO	0.20	28.4	11.8	1.51	flr-flr	HF	Edge	MST37	0.00	No strap
1	4.1	12.67					12.67	1130.00	0.55	617.92	1.82	4.46	352	1.00	352	SW3	7.00	0.21	NO NO	0.21	45.0	15.4	2.43	flr-conc	HF	Edge	STHD14	0.00	No strap
	4.2 S =	10.50				Total OSB wall length =	10.50 27.75	1130.00	0.45 S =	512.08	1.51 8.51	3.92 25.01	374 OK	1.00 Total OSB Capaci	374 ty 10.02	SW3	8.00	0.23	NO	0.23	39.5	11.3	2.82	flr-conc	НГ	Edge	STHD14	0.00	No strap
						(feet)								(kips)		_													
D	. 4 XX7 . 11	(F 4 I	D. I. D'	(*)																				D. I.D.					
Baseme	nt wans	(Front - 1	Back Direct	uon)																			t Walls (Front - vns and windov		<u>10n)</u>				
				ry shear(kips) =	3.71 10.08						imulated Shear =		The rest of the	story shear from ab	ove has been transf	ferred into f	foundation												
		า	Shear Pa	tory height (ft) = anel height (ft) = arm width (ft) =	9.08					100																			
Sto	Wan		Shear Pa Total Diaphra	anel height (ft) = agm width (ft) =	9.08 1930.00	Diata to	Effortivo	Teib Widel	Doroont			C	Dona!	Height/Width	Design Paus!	Wall	Sto	C11			OTM	DM	Dogultont	ПD			Dogultont	Force at	Window
Story	Wall Mark	Wall L(ft)	Shear Pa	anel height (ft) = ngm width (ft) = Opening	9.08	Plate to Opening (ft)	Effective Length (ft)	Trib. Width (ft)	Percent Sharing (%)	Effective Trib. Width	Story V(kips)	Sum V(kips)	Panel Shear (plf)	Height/Width Reduction (%) R = 2*L/H	Design Panel Shear (plf)	Wall Type	Story DL(klf)	Sum DL(klf)			OTM (k-ft)	RM (k-ft)	Resultant HD(kips)	HD TYPE			Resultant HD	Force at Window (Kips)	Window Strap

1.00

1.00

1.00

1.00

1.00

128 519

412

SW4 0.25 0.39

SW2 0.25 0.40 SW3 0.25 0.43 SW2 0.25 0.45

CONCRETE FOUNDATION WALL

CONCRETE FOUNDATION WALL

45.6 17.0 3.11

32.7 14.9 2.16 30.1 8.5 3.59

flr-conc

flr-conc

flr-conc

 STHD14
 0.00

 STHD14
 0.00

 HDU5
 0.00

No strap

No strap

0.44

0.91

0.66

0.49

1.04

3.61

3.31 1.04

251 128 519

412

510 58

226.31

475.00

344.26

255.74

540.00

B 1.2 18.50 B 2.1 9.67 B 3.1 8.75 B 3.2 6.50 B 4.1 18.00

S = 68.67

18.50 9.67

8.75

6.50

18.00

315.00

475.00

600.00

600.00

540.00

0.72

1.00

0.57

0.43

1.00

										* All walls d	lesigned with F	Force-Transfer sh	ould meet a minimum	height to width		_												
Project Nu	mber:		Plan Name:				Sheet Number:					WS 2018, Table		neight to width														
	S22201	1		st Creek Es	states Lot 2			L6			_		5:1 for walls w/o open	nings (increased sh	near						_	te Formula as re	_					
Engineer:	ши		Specifics:	on walle (e	sido (cido)		Date:	0/2022		•	•	S 2018, Table 4.									BLUE = Rev	view and update	as required -	Typical Input				
	HK		3116	ear walls (s	side/sidej		11/1	0/2022		* Shear pane	el height is hei	ght to underside of	or roof or floor framin	g.							2nd Story W	alls (Side / Side	e Direction)					
2nd Stor	y Walls (S	Side / Side	e Direction)					Stud Species	HF												_	and window str						
			Story shear(kips) =	14.99				e (F/B Direction) =	Seismic																			
			Story height (ft) = Shear Panel height (ft) =	9.08 8.08	100% story shear			r (F/B Direction) = Wind or Seismic) =	0.90 Seismic	IBC 2018 E	quation 16-22				J													
			Total Diaphragm width (ft) =	3855.00	YES			oad balance check =																			_	
Story	Wall	Wall	Opening Opening	Opening (max)	Plate to	Effective	Trib. Area	Percent	Effective	Story	Sum	Panel	Height/Width Reduction (%)	Design Panel	Wall	Roof DL	Story		Sum	OTM	RM	Resultant	HD	HD/Strap to	HD location	Resultant	Force at Window	
	Mark	L(ft)	Width (ft) Height (ft)	to Edge (ft)	Opening (ft)	Length (ft)	(sq ft)	Sharing (%)	770.00	V(kips)	V(kips)	Shear (plf)	R = 2*L/H	Shear (plf)	Type	Trib(ft)	DL(klf)		DL(klf)	(k-ft)	(k-ft)	HD(kips)	TYPE	DF or HF?	Edge/Interior?	HD No HD	(Kips)	
2	A1 A2	20.75 12.75	5.00 4.00 6.00 4.50	4.00 3.00	1.08 1.50	15.75 6.75	1100.00 1100.00	0.70 0.30	330.00	2.99 1.28	2.99 1.28	190 190	1.00 1.00	190 190	SW6 SW6	2.00 3.00	0.13 0.14		0.13 0.14	11.7	24.6 10.4	0.13 0.10	flr-flr flr-conc	HF HF	Edge Edge	No HD No HD	2.17 1.43	CS14 CS16
2	B1	19.00	9.00 5.00	3.50	3.00	10.00	955.00	0.34	323.73	1.26	1.26	126	1.00	126	SW6	4.00	0.16		0.16	11.4	25.5	-0.76	flr-beam	HF	Edge	No HD	0.81	CS16
2	B2 C1	19.50 11.00				19.50 11.00	955.00 1100.00	0.66 0.50	631.27 550.00	2.45 2.14	2.45 2.14	126 194	1.00 1.00	126 194	SW6 SW6	5.00 6.00	0.17 0.19		0.17 0.19	22.3 19.4	29.4 10.2	-0.38 0.88	flr-beam flr-flr	HF HF	Edge Edge	No HD MST37	0.00 0.00	No strap No strap
2	C2	11.00				11.00	1100.00	0.50	550.00	2.14	2.14	194	1.00	194	SW6	7.00	0.20		0.20	19.4	11.0	0.80	flr-flr	HF	Edge	MST37	0.00	No strap
2	D1	34.50	6.00 5.00	6.00	1.08	28.50	700.00	1.00	700.00	2.72	2.72	96	1.00	96	SW6	8.00	0.22		0.22	24.7	116.2	-2.69	flr-flr	HF	Edge	No HD	1.90	CS14
	S =	= 128.50			Total OSB wall length (feet)	= 102.50		S =	3855.00	14.99	14.99	OK	Total OSB Capacity (kips)	y 14.99														
1st Story	Walls (Si	ide / Side	Direction)			_								_							1st Story Wa	ılls (Side / Side	Direction)					
						Shear J	panel capacity (Wind or Seismic) =	Seismic												Hold downs	and window str	<u>raps</u>					
			Story shear(kips) = Story height (ft) = Shear Panel height (ft) = Total Diaphragm width (ft) =	10.08 9.08						nulated Shear = balance check =																		
Story	Wall	Wall	Opening Opening	Opening (max)	Plate to	Effective	Trib. Area	Percent	Effective	Story	Sum	Panel	Height/Width Reduction (%)	Design Panel	Wall	Floor DL	Story	Walls/DL	Sum	OTM	RM	Resultant	HD	HD/Strap to	HD location	Resultant	Force at Window	
	Mark	L(ft)	Width (ft) Height (ft)	to Edge (ft)	Opening (ft)	Length (ft)	(sq ft)	Sharing (%)	Trib. Width	V(kips)	V(kips)	Shear (plf)	R = 2*L/H	Shear (plf)	Type	Trib(ft)	DL(klf)	Stacks?	DL(klf)	(k-ft)	(k-ft)	HD(kips)	TYPE	DF or HF?	Edge/Interior?	HD	(Kips)	
1	A1	20.75 13.00	9.00 5.00 9.00 5.00	2.00 2.00	1.08 2.00	11.75	1000.00 1000.00	0.75 0.25	746.03 253.97	2.20 0.75	5.19 2.03	442 508	1.00	442 508	SW3 SW2	2.00 3.00	0.14 0.16	YES YES	0.27 0.30	52.3 20.5	52.5 22.7	-0.01 -0.18	flr-flr	HF	Edge	No HD No HD	2.93 2.29	CMSTC16
1	A2 R1	13.00	5.00 5.50	2.00	2.00	4.00 8.00	800.00	1.00	800.00	2.36	6.07	759	1.00 1.00	759	2W3	4.00	0.16	NO	0.30	61.2	12.8	3.87	flr-flr flr-conc	пг HF	Edge Edge	HDU5	3.60	CS14 CMSTC16
1	C1	34.00	3.30	2.00	2.00	34.00	800.00	1.00	800.00	2.36	6.64	195	1.00	195	SW6	5.00	0.18	YES	0.35	66.9	183.2	-3.47	flr-conc	HF	Edge	No HD	0.00	No strap
1	D1	25.00				25.00	800.00	1.00	800.00	2.36	5.08	203	1.00	203	SW6	6.00	0.19	YES	0.38	51.2	106.7	-2.26	flr-conc	HF	Edge	No HD	0.00	No strap
]																				
	S =	= 105.75			Total OSB wall length	= 82.75		S =	3400.00	10.02	25.01	OK	Total OSB Capacity	y 10.02														
					(feet)								(kips)															
								2.72 kips of shear	r from story above	is transferred	directly into f	oundation. Accu	mulated Shear to wa	lls below is OK!														
Basemer	t Walls (S	Side / Side	e Direction)			Shear _I	panel capacity (\	Wind or Seismic) =	Seismic												-	alls (Side / Side and window str						
			Story shear(kips) =	2.86					Accum	nulated Shear =	= 11.15	> Appx. 60	% accumulated shea	nr from levels abo	ve transferi	red directly i	nto foundation	1										
			Story height (ft) = Shear Panel height (ft) = Total Diaphragm width (ft) =	10.08 9.08 1930.00					load	balance check =	= OK																	
Story	Wall	Wall	Opening Opening	Opening (max)	Plate to	Effective	Trib. Area	Percent	Effective	Story	Sum	Panel	Height/Width Reduction (%)	Design Panel	Wall	Floor DL	Story	Walls/DL	Sum	OTM	RM	Resultant	HD	HD/Strap to	HD location	Resultant	Force at Window	
	Mark	L(ft)	Width (ft) Height (ft)	to Edge (ft)	Opening (ft)	Length (ft)	(sq ft)	Sharing (%)	Trib. Width	V(kips)	V(kips)	Shear (plf)	R = 2*L/H	Shear (plf)	Type	Trib(ft)	DL(klf)	Stacks?	DL(klf)	(k-ft)	(k-ft)	HD(kips)	TYPE		Edge/Interior?	HD	(Kips)	ыар
В	A1	8.83				8.83	900.00	0.36	324.37	0.48	2.96	335	1.00	335	SW4	2.00	0.14	NO NO	0.14	14.8	5.1	1.17	flr-conc	HF	Edge	STHD14	0.00	No strap
R	A2	15.67				15.67 13.00	900.00 740.00	0.64 1.00	575.63 740.00	0.85 1.10	2.76 3.55	176 273	1.00 1.00	176	SW6	3.00	0.16	NO	0.16	34.3	17.3	1.12	flr-conc	HF	Edge	STHD14	0.00	No strap
R	R1	13.00									7 77	//3	, , , , , ,	273	(() N() P i	HOLLING HAT DE LINE	DATION WAL											

1.00

Total OSB Capacity

(kips)

56 CONCRETE FOUNDATION WALL

B C1 34.00

S = 71.50

34.00

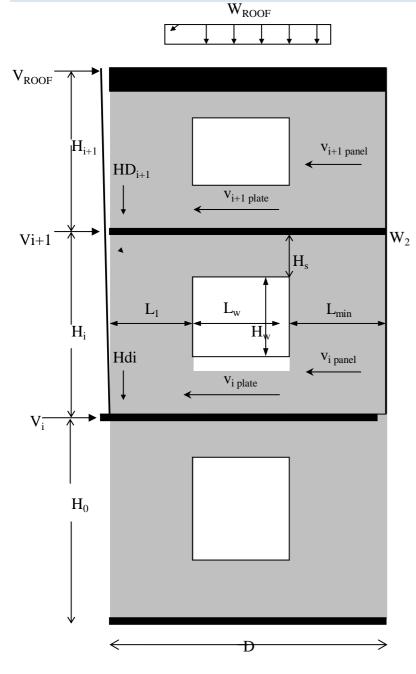
Total OSB wall length = 24.50

(feet)

290.00

1.00

290.00


S = 1930.00

0.43 **1.89** 56

2.86 **11.16 OK**

Project		Sheet number:
	Forest Creek Estates Lot 2	L7
Subject		Date
	SHEAR WALL EQUATION DIAGRAM	11/10/2022

SHEAR WALL WITH WINDOW BASED ON SHEAR TRANSFER:

Where:

 $V_i = Story Shear$

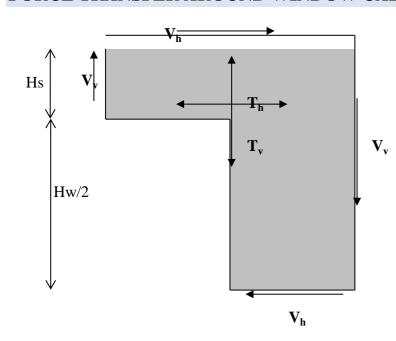
W_i = Story Dead Load

HD_i = Story Holdown

M_{OTi} = Story Over Turning Moment

 $M_{Ri} = Story Resisting Moment$

$$M_{OT\,ROOF} = V_{ROOF} \; x \; H_{1+1} \qquad \qquad M_{OTi} = \left[(V_{i+1} + V_{ROOF}) \; x \; H_i \right] + M_{OT\,ROOF} \label{eq:moof}$$


$$M_{R ROOF} = 0.6 \text{ x } W_{ROOF} \text{ x } D^2/2$$
 $M_{Ri} = 0.6 \text{ x } (W_{i+1} + W_{ROOF}) \text{ x } D^2/2$

$$HD_{i+1} = (M_{OT \, ROOF} - M_{R \, ROOF})/(D - 6") \\ HD_{i} = (M_{OTi} - M_{R1i})/(D - 6")$$

$$V_{i+1 \; panel} = V_{ROOF} \, / \, (L_1 + L_{max}) \qquad \qquad V_{i \; panel} = \left(V_{ROOF} + V_{i+1}\right) \, / \, (L_1 + L_{max})$$

$$V_{i+1 \text{ plate}} = V_{ROOF} / D$$
 $V_{i \text{ plate}} = (V_{ROOF} + V_{i+1}) / D$

FORCE TRANSFER AROUND WINDOW CALCULATION (CANTILEVER PIER METHOD)

$$V_{\text{h}} = v_{\text{i panel}} \, x \, \, L_{\text{max}}$$

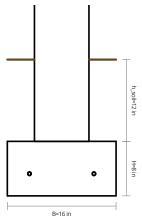
$$V_v = HD_i$$

$$T_h = V_h (H_w / 2 + H_s) / H_s$$

 $T_v = Is$ resisted by the continuous stud adjacent to the window.

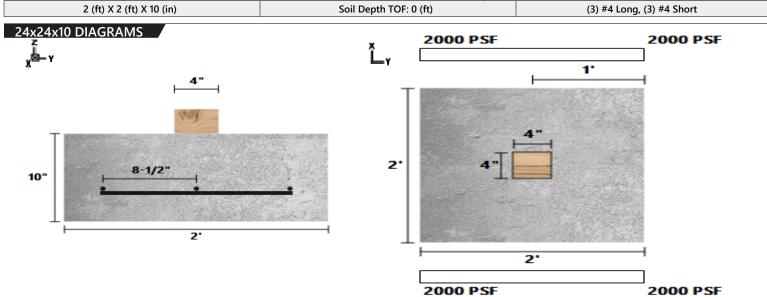
FOUNDATION CALCULATIONS

FOOTING REFERENCE PER PLAN


Wall Footing (version 54) Created with ClearCalcs.com

Client:		Date:	Jun 3, 2022	
Author:	Harrison Kliegl	Job #:		
Project:	Footing Checks	Subject	16" Strip Footing - Dist Load - 2000 PSF	PASS
References:	ACI 318-14			

Summary

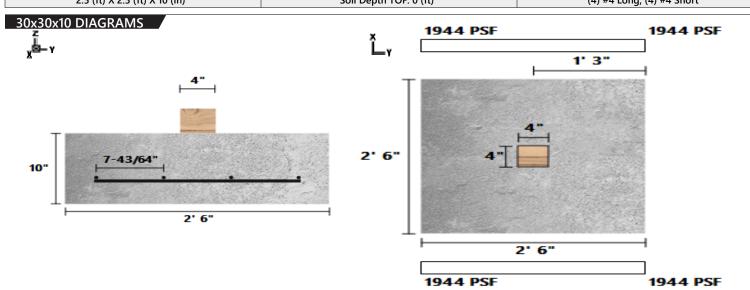

Footing Properties

Comments

	- P		
	Footing Width	B =	1.33 ft
	Footing Thickness	H =	8 in
	Wall Type		Concrete
	Wall Width	b =	$8 \mathrm{\ in}$
	Concrete Strength	$f_c' =$	$2500~\mathrm{psi}$
	Volume of Concrete	$V_c =$	$0.0328~\mathrm{yd^3/ft}$
Soil Prope	erties		
	Allowable Soil Gross Bearing Capacity	$q_a =$	$2000 \; \mathrm{psf}$
	Lateral Sliding Coefficient of Friction	$\mu =$	0.3
Bottom R	einforcement		
	Concrete Cover	cover =	3 in
	Reinforcement Yield Strength	$f_y =$	$60000~\mathrm{psi}$
Design Cr	iteria		
	Design Code for Load Combinations		International Building Code (IBC) 2018
	Sliding and Overturning Minimum Factor of Safety	$FS_{\min} =$	1.5

PASS

DATE: 9/29/2021 **COMPANY:** L120 Engineering & Design, LLC **VITRUVIUS BUILD:** StruCalc **DESIGNED BY:** Mans Thurfjell **CUSTOMER: REVIEWED BY:** Mans Thurfjell PROJ. ADDRESS: **PROJECT NAME:** 2018 foundation 2000psf LEVEL: LOADING: **Basement** MEMBER NAME: 24x24x10 CODE: 2018 International Building Code MEMBER TYPE: ISOLATED FOOTING ACI: ACI 318-14 MATERIAL: Concrete


MATERIAL PROP	ERTIES					
FOOTING						
fc' (psi)	Ec (psi)	Density (lbf/ft³)	Width (ft)	Length (ft)	Depth (in)	Volume (ft³)
2500	2880952	145	2	2	10	3.33
CALCULATION VARIABLE	S					
Bo (in)	Ф-Х	Ф-Ү				
42	0	0				
COLUMN						
Width (in)	Length (in)	Material	Offset (in)			
4	4	Wood	0			
SOIL						
Bearing Strength (lbf/ft²)	Density (lbf/ft³)	Cohesion	Friction Angle	Depth (ft)	Rankine Coefficient (Kp)	
2000	140	0	30	0	3	
REBAR						
Bar Size #	# Bars Long	# Bars Short	fy (psi)	Es (psi)		
4	3	3	40000	2.9E+07		

PASS-FAIL					
	PASS/FAIL	MAGNITUDE	STRENGTH	LOAD COMBO	
Soil Bearing Pressure (lbf/ft²)	PASS (0.0%)	2000.0	2000.0	D+L	
Two-Way Shear (Punching) (lbf)	PASS (72.6%)	11200.0	40950.0	1.2D+1.6L+0.5Lr	
One-Way Shear X (lbf)	PASS (86.0%)	1633.3	11700.0	1.2D+1.6L+0.5Lr	
Moment X (lbf-ft)	PASS (39.2%)	1944.4	3200.0	1.2D+1.6L+0.5Lr	
One-Way Shear Y (lbf)	PASS (86.0%)	1633.3	11700.0	1.2D+1.6L+0.5Lr	
Moment Y (lbf-ft)	PASS (39.2%)	1944.4	3200.0	1.2D+1.6L+0.5Lr	
Crushing (psi)	PASS (49.3%)	700.0	1381.3	1.2D+1.6L+0.5Lr	

LOAD LIST						
Туре	Left Magnitude	Right Magnitude	Load Start (ft)	Load End (ft)	Load Type	Direction
Point (lbf)	4000	-	0	-	Dead	Z
Point (lbf)	4000	-	0	-	Live	Z

PASS

DATE: 9/29/2021 **COMPANY:** L120 Engineering & Design, LLC **VITRUVIUS BUILD:** StruCalc **DESIGNED BY:** Mans Thurfjell **CUSTOMER: REVIEWED BY:** Mans Thurfjell PROJ. ADDRESS: **PROJECT NAME:** 2018 foundation 2000psf LEVEL: LOADING: **Basement MEMBER NAME:** 30x30x10 CODE: 2018 International Building Code **MEMBER TYPE:** ISOLATED FOOTING ACI: ACI 318-14 MATERIAL: Concrete Soil Depth TOF: 0 (ft) 2.5 (ft) X 2.5 (ft) X 10 (in) (4) #4 Long, (4) #4 Short

MATERIAL PROPE	RTIES					
FOOTING						
fc' (psi)	Ec (psi)	Density (lbf/ft³)	Width (ft)	Length (ft)	Depth (in)	Volume (ft³)
2500	2880952	145	2.5	2.5	10	5.21
CALCULATION VARIABLES	5					
Bo (in)	Ф-Х	Ф-Ү				
42	0	0				
COLUMN						
Width (in)	Length (in)	Material	Offset (in)			
4	4	Wood	0			
SOIL						
Bearing Strength (lbf/ft²)	Density (lbf/ft³)	Cohesion	Friction Angle	Depth (ft)	Rankine Coefficient (Kp)	
2000	140	0	30	0	3	
REBAR						
Bar Size #	# Bars Long	# Bars Short	fy (psi)	Es (psi)		
4	4	4	40000	2.9E+07		

17133 1711					
	PASS/FAIL	MAGNITUDE	STRENGTH	LOAD COMBO	
Soil Bearing Pressure (lbf/ft²)	PASS (2.8%)	1944.0	2000.0	D+L	
Two-Way Shear (Punching) (lbf)	PASS (58.4%)	17040.0	40950.0	1.2D+1.6L+0.5Lr	
One-Way Shear X (lbf)	PASS (74.8%)	3692.0	14625.0	1.2D+1.6L+0.5Lr	
Moment X (lbf-ft)	PASS (0.0%)	3999.7	4000.0	1.2D+1.6L+0.5Lr	
One-Way Shear Y (lbf)	PASS (74.8%)	3692.0	14625.0	1.2D+1.6L+0.5Lr	
Moment Y (lbf-ft)	PASS (0.0%)	3999.7	4000.0	1.2D+1.6L+0.5Lr	
Crushing (psi)	PASS (22.9%)	1065.0	1381.3	1.2D+1.6L+0.5Lr	

LOA	D FIZE						
	Туре	Left Magnitude	Right Magnitude	Load Start (ft)	Load End (ft)	Load Type	Direction
Р	Point (lbf)	6000	-	0	-	Dead	Z
P	Point (lbf)	6150	-	0	-	Live	Z

Created with ClearCalcs.com

	Client:		Date:	Jul 29, 2022
:	Author:	Harrison Kliegl	Job #:	
	Project:	2000 PSF Retaining Walls	Subject:	Member Schedule

	Calculation	Member	Quantity	Comments
78%	4'-0" Max Retaining Wall			
77%	6'-0" Max Retaining Wall			
79%	8'-0" Max Retaining Wall			
79%	8'-0" Max Retaining Wall with 40 psf Surcharge			
80%	9'-6" Max Retaining Wall			
80%	10'-6" Max Retaining Wall			
93%	13'-0" Max Retaining Wall			

United States (version 40) Created with ClearCalcs.com

Client:	Client:		Jul 29, 2022
Author:	Harrison Kliegl	Job #:	
Project:	2000 PSF Retaining Walls	Subject:	Project Defaults

Design Criteria

International Building Code (IBC) 2018 Design Code Full Name code =

Additionally Include Simplified DL+LL Service Load Combination?

Yes

Deflection Span Limits

Defl	ection Span Limits	$\Delta_{span} =$		
Member Type type	Short-Term (L, Lr, S, or W) D_{ST} (L/)	Long-Term (kD+L) D_{LT} (L/)	Simplified DL+LL (D+L) D_{DL+LL} (L/)	
Roof	180	120	100	
Ceiling	240	180	120	
Floor	360	240	180	
Wall	240	1	100	

Absolute Deflection Limit $\Delta_{lim}=~1\,\mathrm{in}$ Default Bearing Length $l_b = 3 \text{ in}$

Building Geometry

 $n_{story} = 2$ Number of Stories

Roof Slope $\alpha = 6:12$

Default Member Spacings spacings =

Rafters s_{raft} (in)	Joists s_{joist} (in)	Wall Studs s_{studs} (in)
16	16	16

Top Floor Height Dimensions $h_{top.floor} =$

Г	Story Height (Floor to Eave) h_{story}	Headroom (Floor to Ceiling) h_{head}	Window Height (Floor to Top of Window) $h_{window} \text{ (ft)}$
r	12	10	Q
	14	10	0

Lower Floors Height Dimensions $h_{lower.floors} =$

Story Height (Floor to Floor) h_{story} (ft)	Headroom (Floor to Ceiling) h_{head} (ft)	Window Height (Floor to Top of Window) h_{window} (ft)
12	10	8

Maximum Roof Beam Depth $d_{max,R} = 24 \text{ in}$ Floor Beam Depth Limits $d_{min/max} =$

Minimum Beam Depth d_{min} (in) Maximum Beam Depth d_{max} (in) 0 24

Default Roof Loads

Default Roof Load			ds	loads	$r_{roof} =$	
	Superimposed Dead Load w_D (psf)	Roof Live Load w_{Lr} (psf)	Alternative Minimum Live Load P_{Lr2} (lb)	Snow Load w_S (psf)	Ultimate Wind Uplift (C&C) w_{Wu} (psf)	Ultimate Wind Downward (C&C) w_{Wd} (psf)
	15	20	0	30	30	30

Default Ceiling Loads

Default Ceiling Loads	$loads_{ceiling} =$	
Superimposed Dead Load w_D (psf)	Live Load w_L (psf)	Alternative Minimum Live Load P_{L2} (lb)
5	20	0

Default Floor Loads

Default Floor Loads	$loads_{floor} =$	
Superimposed Dead Load w_D (psf)	Live Load w_L (psf)	Alternative Minimum Live Load P_{L2} (lb)
10	40	0

Default Wall & Window Loads

Default Total Wall & Window $w_{D,wall+window} =$ Dead Loads

Total Weight of Interior Wall $w_{D,IW}$	Total Weight of Exterior Wall $w_{D,EW}$	Total Weight of Window $w_{D,window}$
(psf)	(psf)	(psf)
5	30	1.5

Default Ultimate Wall & Window

 $w_{W,wall+window} =$ Wind Loads

Ultimate Inward Wind Load (C&C) w_{Wd} (psf)	Ultimate Outward Wind Load (C&C) w_{Wu} (psf)
30	30

Default Railing Properties

Railing Height $h_{railing} = 4 \, \mathrm{ft}$ Railing Total Weight $w_{D,railing} = ~20~{
m plf}$

Comments

Client:		С	Date:	Jul 29, 2022	
Author:	Harrison Kliegl	J	ob #:		
Project:	2000 PSF Retaining Walls	s	Subject:	4'-0" Max Retaining Wall	PASS
References:	IBC 2018, ASCE 7-16				

Stability Summary			Base Soil Properties		
Lateral Force Transmitted to Footing Restraint F_{re}	$_{estraint} =$	$0\;\mathrm{kip/ft}$	Source of Soil Properties Concrete Properties		Same as Backfill
78% Overturning Factor of Safety FS_o Maximum Bearing Pressure 66% Soil Allowable Bearing Capacity Stem Summary		$\begin{array}{c} 1.91 \\ 1310 \hspace{0.1cm} \mathrm{psf} \\ 2000 \hspace{0.1cm} \mathrm{psf} \end{array}$	Concrete Strength Reinforcement Yield Strength Volume of Concrete Stem Reinforcement	$f_y =$	$2500 \; \mathrm{psi} \\ 60 \; 000 \; \mathrm{psi} \\ 0.216 \; \mathrm{yd^3/ft}$
	,	$3.66~{\rm kip\cdot ft/ft}$ $5.63~{\rm kip/ft}$	Stem Concrete Cover Heel Reinforcement (Top Bars)	$c_{stem} =$	1.5 in
Heel Summary $egin{array}{cccc} 4\% & & & & & & & & & & & & & & & & & & $	$M_{n \ heel} =$	$9.85\mathrm{kip}\cdot\mathrm{ft/ft}$	Heel Concrete Cover Toe Reinforcement (Bottom Bars)	$c_{heel}=$	3 in
	,	7.88 kip/ft	Include Toe Reinforcement? Toe Concrete Cover Heel Reinforcement Depth & Spacing	$c_{toe}=$	Yes $3 ext{ in}$
	,	$9.85\;\mathrm{kip}\cdot\mathrm{ft/ft}$ $7.88\;\mathrm{kip/ft}$	Area of Heel Reinforcement Toe Reinforcement Depth & Spacing	$A_{s,heel}=% {\displaystyle\int\limits_{s}^{\infty}} A_{s,heel}={\displaystyle\int\limits_{s}^{\infty}} A_{s,heel}={\displaystyle\int\limits_{$	$0.259~\rm in^2/ft$
Key Dimensions			Area of Toe Reinforcement	$A_{s,toe} =$	$0.259 \; \mathrm{in^2/ft}$
Length of Heel	$H = t_{stem} = t_{stem,top} = L_{heel} = t_{footing} = t_{footing}$	8 in 8 in 0.92 ft	Design Criteria Design Code for Load Combinations Retaining Wall Movement Condition Footing Restrained Against	code =	International Buildin Code (IBC) 2018 Active Case (Ka)
Surcharge Dead Load Surcharge is Directly Above Heel?		No	Sliding? Consider Resisting Soil Pressures for Stability Checks?		Yes
Soil Properties	_		Consider Soil Above Toe for Stability Checks?		No
Height of Backfill Depth of Soil Cover to Bottom of Footing	$h_{bf} = \ h_{cov} =$	1.5 ft	Consider Resisting Pressure from Soil Above Toe for Strength Design?		No
Lateral Pressure Method		Equivalent Fluid Pressure - Custom	Soil Unit Weight		
Soil Unit Weight	$\gamma_{input} =$	Values $125~\mathrm{pcf}$	Soil Unit Weight	$\gamma =$	125 pcf

Client:		Г	Date:	Jul 29, 2022	
Author:	Harrison Kliegl	J	ob #:		
Project:	2000 PSF Retaining Walls	s	Subject:	6'-0" Max Retaining Wall	PASS
References:	IBC 2018, ASCE 7-16				

Stability Summary			Base Soil Properties		
Lateral Force Transmitted to Footing Restraint	$_{restraint} =$	$0 \ \mathrm{kip/ft}$	Source of Soil Properties Concrete Properties		Same as Backfill
Overturning Factor of Safety FS_{o} Maximum Bearing Pressure Soil Allowable Bearing Capacity Stem Summary		$\begin{array}{c} 2.41 \\ 1120 \hspace{0.5 cm} \mathrm{psf} \\ 2000 \hspace{0.5 cm} \mathrm{psf} \end{array}$	Concrete Strength Reinforcement Yield Strength Volume of Concrete Stem Reinforcement	$f_y =$	$2500 \; \mathrm{psi} \\ 60 \; 000 \; \mathrm{psi} \\ 0.321 \; \mathrm{yd}^3/\mathrm{ft}$
	,	$3.66~{\rm kip}\cdot{\rm ft/ft}$ $5.63~{\rm kip/ft}$	Stem Concrete Cover Heel Reinforcement (Top Bars)	$c_{stem} =$	1.5 in
Heel Summary 14% Moment Capacity of Heel φ4	$M_{n\ heel} =$	$9.85 \mathrm{kip} \cdot \mathrm{ft/ft}$	Heel Concrete Cover Toe Reinforcement (Bottom Bars)	$c_{heel}=$	3 in
	,	7.88 kip/ft	Include Toe Reinforcement? Toe Concrete Cover Heel Reinforcement Depth & Spacing	$c_{toe}=$	Yes $3 ext{ in}$
	,	$9.85\;\mathrm{kip}\cdot\mathrm{ft/ft}$ $7.88\;\mathrm{kip/ft}$	Area of Heel Reinforcement Toe Reinforcement Depth & Spacing	$A_{s,heel} =$	$0.259~\rm in^2/ft$
Key Dimensions			Area of Toe Reinforcement	$A_{s,toe} =$	$0.259~\rm in^2/ft$
Length of Heel	$H = t_{stem} = t_{stem,top} = t_{heel} = t_{footing} = t_{footing}$	8 in 8 in 1.5 ft	Design Criteria Design Code for Load Combinations Retaining Wall Movement Condition	code =	International Building Code (IBC) 2018 Active Case (Ka)
Surcharge Dead Load Surcharge is Directly Above Heel?		No	Footing Restrained Against Sliding? Consider Resisting Soil Pressures for Stability Checks?		Yes No
Soil Properties			Consider Soil Above Toe for Stability Checks?		No
Height of Backfill Depth of Soil Cover to Bottom of Footing	$h_{bf} = \ h_{cov} = \ % \left\{ egin{align*} h_{cov} = \ h_{cov} = $	1.5 ft	Consider Resisting Pressure from Soil Above Toe for Strength Design?		No
Lateral Pressure Method		Equivalent Fluid Pressure - Custom	Soil Unit Weight		
Soil Unit Weight	$\gamma_{input} =$	Values $125~\mathrm{pcf}$	Soil Unit Weight	$\gamma =$	125 pcf

Client:		Date:		Jul 29, 2022	
Author:	Harrison Kliegl	Job #			
Project:	2000 PSF Retaining Walls	Subje	ct:	8'-0" Max Retaining Wall	PASS
References:	IBC 2018, ASCE 7-16				

tability Summary			Base Soil Properties		
Lateral Force Transmitted to Footing Restraint	$F_{restraint} =$	$0.136 \ \mathrm{kip/ft}$	Source of Soil Properties Concrete Properties		Same as Backfill
79% Overturning Factor of Safety Maximum Bearing Pressure 71% Soil Allowable Bearing Capacity tem Summary	2	$\begin{array}{c} 1.91 \\ 1420 \; \mathrm{psf} \\ \\ 2000 \; \mathrm{psf} \end{array}$	Concrete Strength Reinforcement Yield Strength Volume of Concrete Stem Reinforcement	$f_y =$	$2500 \; \mathrm{psi} \\ 60 \; 000 \; \mathrm{psi} \\ 0.38 \; \mathrm{yd^3/ft}$
70% Moment Capacity of Wall Stem 33% Shear Capacity of Wall Stem	$\phi M_{n,stem} =$ $\phi V_{n,stem} =$	$7.12~{\rm kip\cdot ft/ft}$ $5.63~{\rm kip/ft}$	Stem Concrete Cover Heel Reinforcement (Top Bars)	$c_{stem} =$	1.5 in
11% Moment Capacity of Heel	$\phi M_{n,heel} =$	$10.1\mathrm{kip}\cdot\mathrm{ft/ft}$	Heel Concrete Cover Toe Reinforcement (Bottom Bars)	$c_{heel}=$	3 in
Shear Capacity of Wall Base	$\phi V_{n,heel} =$	$7.88 \mathrm{kip/ft}$	Include Toe Reinforcement? Toe Concrete Cover Heel Reinforcement Depth & Spacing	$c_{toe}=$	Yes 3 in
Moment Capacity of Toe Shear Capacity of Toe	,	$10.1~{\rm kip\cdot ft/ft}$ $7.88~{\rm kip/ft}$	Area of Heel Reinforcement Toe Reinforcement Depth & Spacing	$A_{s,heel} =$	$0.267~\rm in^2/ft$
ey Dimensions			Area of Toe Reinforcement	$A_{s,toe} =$	$0.267 \; \mathrm{in^2/ft}$
Wall Height Thickness of Wall Stem at Base Thickness of Wall Stem at Top Length of Heel Thickness of Footing	$egin{aligned} H = \ t_{stem} = \ t_{stem,top} = \ t_{heel} = \ t_{footing} = \end{aligned}$	8 in 8 in 1.25 ft	Design Criteria Design Code for Load Combinations Retaining Wall Movement Condition Footing Restrained Against	code =	International Buildir Code (IBC) 2018 Active Case (Ka)
urcharge Dead Load Surcharge is Directly Above Heel?		No	Sliding? Consider Resisting Soil Pressures for Stability Checks?		Yes
oil Properties	1	0.0	Consider Soil Above Toe for Stability Checks?		No
Height of Backfill Depth of Soil Cover to Bottom of Footing	$h_{bf} = \ h_{cov} =$	1.5 ft	Consider Resisting Pressure from Soil Above Toe for Strength Design?		No
Lateral Pressure Method		Equivalent Fluid Pressure - Custom	Soil Unit Weight		
		Values	Soil Unit Weight	$\gamma =$	125 pcf

Client:		Date:	Jul 29, 2022
Author:	Harrison Kliegl	Job #:	
Project:	2000 PSF Retaining Walls	Subject:	8'-0" Max Retaining Wall with 40 PASS psf Surcharge
References:	IBC 2018, ASCE 7-16		

Stability Summary			Base Soil Properties		
Lateral Force Transmitted to Footing Restraint	$F_{restraint} =$	$0.182~\mathrm{kip/ft}$	Source of Soil Properties Concrete Properties		Same as Backfill
79% Overturning Factor of Safety Maximum Bearing Pressure 69% Soil Allowable Bearing Capacity Stem Summary	=	$\begin{array}{c} 1.9 \\ 1390 \; \mathrm{psf} \\ 2000 \; \mathrm{psf} \end{array}$	Concrete Strength Reinforcement Yield Strength Volume of Concrete Stem Reinforcement	$f_y =$	$2500 \; \mathrm{psi} \\ 60 \; 000 \; \mathrm{psi} \\ 0.386 \; \mathrm{yd^3/ft}$
75% Moment Capacity of Wall Stem 34% Shear Capacity of Wall Stem	$\phi M_{n,stem} = \ \phi V_{n,stem} = \ % \left\{ egin{align*} & \phi V_{n,stem} = \ & \phi V_{n,stem} $	$7.12~{\rm kip\cdot ft/ft}$ $5.63~{\rm kip/ft}$	Stem Concrete Cover Heel Reinforcement (Top Bars)	$c_{stem} =$	
Heel Summary 11% Moment Capacity of Heel	$\phi M_{n,heel} =$	$10.1~{\rm kip\cdot ft/ft}$	Toe Reinforcement (Bottom Bars)	$c_{heel} =$	
23% Shear Capacity of Wall Base Toe Summary	$\phi V_{n,heel} =$	$7.88 \ \rm kip/ft$	Include Toe Reinforcement? Toe Concrete Cover Heel Reinforcement Depth & Spacing	$c_{toe}=$	Yes 3 in
51% Moment Capacity of Toe 37% Shear Capacity of Toe	,,	$10.1~{\rm kip}\cdot{\rm ft/ft}$ $7.88~{\rm kip/ft}$	Area of Heel Reinforcement Toe Reinforcement Depth & Spacing	$A_{s,heel}=% {\displaystyle\int\limits_{s}^{s}} A_{s,heel}={\displaystyle\int\limits_{s}^{s}} A_{s,heel}={\displaystyle\int\limits_{$	$0.267~\mathrm{in^2/ft}$
Key Dimensions			Area of Toe Reinforcement	$A_{s,toe} =$	$0.267~\rm in^2/ft$
Wall Height Thickness of Wall Stem at Base Thickness of Wall Stem at Top Length of Heel Thickness of Footing	$H = \ t_{stem} = \ t_{stem,top} = \ L_{heel} = \ t_{footing} = $	8 in 8 in 1.25 ft	Design Criteria Design Code for Load Combinations Retaining Wall Movement Condition	code =	International Building Code (IBC) 2018 Active Case (Ka)
Surcharge Dead Load Surcharge is Directly Above Heel?		No	Footing Restrained Against Sliding? Consider Resisting Soil Pressures for Stability Checks?		Yes No
Soil Properties Height of Backfill	$h_{bf} =$	0.6	Consider Soil Above Toe for Stability Checks?		No
Depth of Soil Cover to Bottom of Footing	$h_{cov} =$	1.5 ft	Consider Resisting Pressure from Soil Above Toe for Strength Design?		No
Lateral Pressure Method		Equivalent Fluid Pressure - Custom	Soil Unit Weight		
Soil Unit Weight	$\gamma_{input} =$	Values $125~ m pcf$	Soil Unit Weight	$\gamma =$	125 pcf

Client:		Da	ate:	Jul 29, 2022	
Author:	Harrison Kliegl	Job	b #:		
Project:	2000 PSF Retaining Walls	Sul	ıbject:	9'-6" Max Retaining Wall	PASS
References:	IBC 2018, ASCE 7-16				

Stability Summary			Base Soil Properties		
Lateral Force Transmitted to Footing Restraint	$F_{restraint} =$	$0.385 \; \mathrm{kip/ft}$	Source of Soil Properties Concrete Properties		Same as Backfill
80% Overturning Factor of Safety Maximum Bearing Pressure 68% Soil Allowable Bearing Capacity Stem Summary	4	$\begin{array}{c} 1.88 \\ 1350 \ \mathrm{psf} \\ 2000 \ \mathrm{psf} \end{array}$	Concrete Strength Reinforcement Yield Strength Volume of Concrete Stem Reinforcement	$f_y =$	$2500 \; \mathrm{psi} \\ 60 \; 000 \; \mathrm{psi} \\ 0.454 \; \mathrm{yd^3/ft}$
80% Moment Capacity of Wall Stem 46% Shear Capacity of Wall Stem	$\phi M_{n,stem} = \ \phi V_{n,stem} = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$10.4\mathrm{kip}\cdot\mathrm{ft/ft}$ $5.63\mathrm{kip/ft}$	Stem Concrete Cover Heel Reinforcement (Top Bars)	$c_{stem} =$	
Heel Summary 13% Moment Capacity of Heel 26% Shear Capacity of Wall Base	$\phi M_{n,heel} = \ \phi V_{n,heel} =$	10.1 kip · ft/ft 7.88 kip/ft	Heel Concrete Cover Toe Reinforcement (Bottom Bars) Include Toe Reinforcement?	$c_{heel} =$	3 in
Toe Summary Salam Capacity of Wall Base Toe Summary Salam Moment Capacity of Toe	,,	14.9 kip · ft/ft	Toe Concrete Cover Heel Reinforcement Depth & Spacing	$c_{toe} =$	
49% Shear Capacity of Toe Key Dimensions	,	7.88 kip/ft	Area of Heel Reinforcement Toe Reinforcement Depth & Spacing	.,	0.267 in ² /ft
Wall Height Thickness of Wall Stem at Base Thickness of Wall Stem at Top	$H = \ t_{stem} = \ t_{stem,top} =$		Area of Toe Reinforcement Design Criteria Design Code for Load Combinations	-,	0.4 in²/ft International Building Code (IBC) 2018
Length of Heel Thickness of Footing Surcharge	$L_{heel} = \ t_{footing} =$	$1.25~\mathrm{ft}$	Retaining Wall Movement Condition Footing Restrained Against		Active Case (Ka)
Dead Load Surcharge is Directly Above Heel?		No	Sliding?Consider Resisting Soil Pressures for Stability Checks?		No
Soil Properties Height of Backfill	$h_{bf} =$	10.5 ft	Consider Soil Above Toe for Stability Checks?		No
Depth of Soil Cover to Bottom of Footing	$h_{cov} =$	1.5 ft	Consider Resisting Pressure from Soil Above Toe for Strength Design?		No
Lateral Pressure Method		Equivalent Fluid Pressure - Custom Values	Soil Unit Weight Soil Unit Weight	$\gamma =$	125 pcf
Soil Unit Weight	$\gamma_{input} =$	$125 \; \mathrm{pcf}$	555	,	

Client:		Date:	Jul 29, 2022	
Author:	Harrison Kliegl	Job #:		
Project:	2000 PSF Retaining Walls	Subject:	10'-6" Max Retaining Wall	PASS
References:	IBC 2018, ASCE 7-16			

Stability Summary			Base Soil Properties		
Lateral Force Transmitted to Footing Restraint	$F_{restraint} =$	-,	Source of Soil Properties Concrete Properties		Same as Backfill
Maximum Bearing Pressure 65% Soil Allowable Bearing Capacity Stem Summary		1.87 $1300 \mathrm{psf}$ $2000 \mathrm{psf}$	Concrete Strength Reinforcement Yield Strength Volume of Concrete Stem Reinforcement	$f_y =$	$\begin{array}{c} 2500 \; \mathrm{psi} \\ 60 \; 000 \; \mathrm{psi} \\ \\ 0.506 \; \mathrm{yd^3/ft} \end{array}$
75% Moment Capacity of Wall Stem 56% Shear Capacity of Wall Stem	$\phi M_{n,stem} = \ \phi V_{n,stem} = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	- <i>'</i>	Stem Concrete Cover Heel Reinforcement (Top Bars)	$c_{stem} =$	
Heel Summary 14% Moment Capacity of Heel	$\phi M_{n,heel} =$	$10.1~{\rm kip}\cdot{\rm ft/ft}$	Heel Concrete Cover Toe Reinforcement (Bottom Bars)	$c_{heel} =$	
28% Shear Capacity of Wall Base Toe Summary	$\phi V_{n,heel} =$	$7.88 \ \rm kip/ft$	Include Toe Reinforcement? Toe Concrete Cover Heel Reinforcement Depth & Spacing	$c_{toe} =$	Yes 3 in
57% Moment Capacity of Toe 58% Shear Capacity of Toe	,	$21.7\mathrm{kip}\cdot\mathrm{ft/ft}$ $7.88\mathrm{kip/ft}$	Area of Heel Reinforcement Toe Reinforcement Depth & Spacing	$A_{s,heel}=% {\displaystyle\int\limits_{0}^{\infty }} {\displaystyle\int\limits_{$	$0.267~\mathrm{in^2/ft}$
Key Dimensions			Area of Toe Reinforcement	$A_{s,toe}=$	$0.6~\rm in^2/ft$
Wall Height Thickness of Wall Stem at Base Thickness of Wall Stem at Top Length of Heel Thickness of Footing	$H = \ t_{stem} = \ t_{stem,top} = \ L_{heel} = \ t_{footing} = $	$8 \ \mathrm{in} \\ 1.25 \ \mathrm{ft}$	Design Criteria Design Code for Load Combinations Retaining Wall Movement Condition	code =	International Buildir Code (IBC) 2018 Active Case (Ka)
Surcharge Dead Load Surcharge is Directly			Footing Restrained Against Sliding? Consider Resisting Sail Processor		Yes
Above Heel?		No	Consider Resisting Soil Pressures for Stability Checks?		No
Soil Properties Height of Backfill	$h_{bf} =$	11.5 ft	Consider Soil Above Toe for Stability Checks?		No
Depth of Soil Cover to Bottom of Footing	$h_{cov}=$	$1.5\mathrm{ft}$ Equivalent Fluid	Consider Resisting Pressure from Soil Above Toe for Strength Design?		No
Lateral Pressure Method		Pressure - Custom Values	Soil Unit Weight Soil Unit Weight	$\gamma =$	125 pcf
Soil Unit Weight	$\gamma_{input} =$	$125~\mathrm{pcf}$			

Client:		Date:	Jul 29, 2022	
Author:	Harrison Kliegl	Job #:		
Project:	2000 PSF Retaining Walls	Subject:	13'-0" Max Retaining Wall	PASS
References:	IBC 2018, ASCE 7-16			

Stability Summary			Base Soil Properties		
Lateral Force Transmitted to Footing Restraint	$F_{restraint} =$	$0.891 \; \mathrm{kip/ft}$	/ft Source of Soil Properties Concrete Properties		Same as Backfill
72% Overturning Factor of Safety Maximum Bearing Pressure 61% Soil Allowable Bearing Capacity Stem Summary	=	$\begin{array}{c} 2.09 \\ 1210 \hspace{0.1cm} \mathrm{psf} \\ 2000 \hspace{0.1cm} \mathrm{psf} \end{array}$	Concrete Strength Reinforcement Yield Strength Volume of Concrete Stem Reinforcement	$f_y =$	$2500 \; \mathrm{psi} \\ 60 \; 000 \; \mathrm{psi} \\ 0.773 \; \mathrm{yd^3/ft}$
76% Moment Capacity of Wall Stem 64% Shear Capacity of Wall Stem	$\phi M_{n,stem} = $	$26.8~{\rm kip\cdot ft/ft}$ $7.37~{\rm kip/ft}$	Stem Concrete Cover Heel Reinforcement (Top Bars)	$c_{stem} =$	1.5 in
Heel Summary 10% Moment Capacity of Heel	$\phi M_{n \ hool} =$	$24.3~{ m kip}\cdot{ m ft/ft}$	Heel Concrete Cover Toe Reinforcement (Bottom Bars)	$c_{heel}=$	3 in
33% Shear Capacity of Wall Base Toe Summary	$\phi V_{n,heel} =$		Include Toe Reinforcement? Toe Concrete Cover Heel Reinforcement Depth & Spacing	$c_{toe}=$	Yes 3 in
93% Moment Capacity of Toe 65% Shear Capacity of Toe	$\phi M_{n,toe} = \ \phi V_{n,toe} = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$24.3~{\rm kip\cdot ft/ft}$ $9.68~{\rm kip/ft}$	Area of Heel Reinforcement Toe Reinforcement Depth & Spacing	$A_{s,heel}=% {\displaystyle\int\limits_{0}^{\infty }} {\displaystyle\int\limits_{$	$0.533~\rm in^2/ft$
Key Dimensions			Area of Toe Reinforcement	$A_{s,toe} =$	$0.533 \; \mathrm{in^2/ft}$
Wall Height Thickness of Wall Stem at Base Thickness of Wall Stem at Top Length of Heel	$H = \ t_{stem} = \ t_{stem,top} = \ L_{heel} =$	10 in 10 in 1.5 ft	Design Criteria Design Code for Load Combinations Retaining Wall Movement Condition	code =	International Building Code (IBC) 2018 Active Case (Ka)
Thickness of Footing $t_{footing} = % \left(\frac{1}{2} \right) \left($		14 in	Footing Restrained Against Sliding?		Yes
Dead Load Surcharge is Directly Above Heel?		No	Consider Resisting Soil Pressures for Stability Checks?		No
Soil Properties Height of Backfill	$h_{bf} =$	14 ft	Consider Soil Above Toe for Stability Checks?		No
Depth of Soil Cover to Bottom of Footing	$h_{cov} =$	1.5 ft	Consider Resisting Pressure from Soil Above Toe for Strength Design?		No
Lateral Pressure Method		Equivalent Fluid Pressure - Custom	Soil Unit Weight		
Soil Unit Weight	$\gamma_{input} =$	Values $125~\mathrm{pcf}$	Soil Unit Weight	$\gamma =$	$125~\mathrm{pcf}$

Supplementary Calculations for the following:

- ~ Hold-down anchor design/calculations
- Hand-rail calculations (wood/concrete)
- ~ Balloon framed stud design
- ~ Ledger Calculations/Data
- **Typical Posts**

Hold-down anchor design calculations

Company:	Company: L120 Engineering & Design		5/3/2018	
Engineer:	MRT	Page:	1/4	
Project:	Hold-down Anchors			
Address:				
Phone:				
E-mail:				

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

5/8" DIA Anchor

2. Input Data & Anchor Parameters

General

Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place

Material: AB_H Diameter (inch): 0.625

Effective Embedment depth, hef (inch): 4.000

Anchor category: -Anchor ductility: Yes h_{min} (inch): 6.13 C_{min} (inch): 1.38 S_{min} (inch): 2.50

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

Ψ_{c,V}: 1.0

Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No

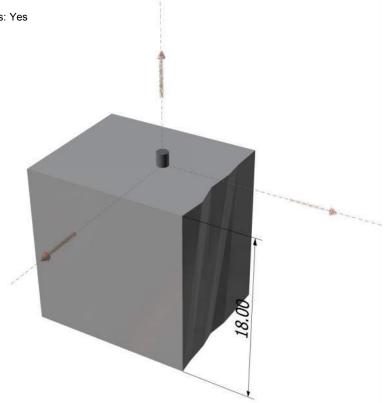
Ignore 6do requirement: Yes Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 0.9D + 1.0E

Seismic design: Yes

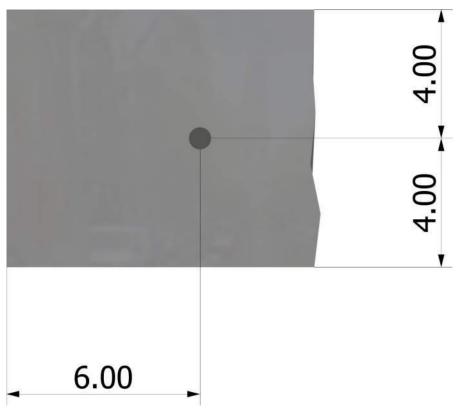
Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied


Ductility section for shear: 17.2.3.5.2 not applicable

 Ω_0 factor: not set

Apply entire shear load at front row: No

Anchors only resisting wind and/or seismic loads: Yes


<Figure 1>

Company:	L120 Engineering & Design	Date:	5/3/2018
Engineer:	MRT	Page:	2/4
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB5H (5/8"Ø)

Company:	L120 Engineering & Design	Date:	5/3/2018
Engineer:	MRT	Page:	3/4
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	2925.0	0.0	0.0	0.0	
Sum	2925 0	0.0	0.0	0.0	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 2925 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e^i_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e^i_{Ny} (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
27120	0.75	20340

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)

 $N_b = k_c \lambda_a \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. 17.4.2.2a)

k _c	λ_a	f'_c (psi)	h _{ef} (in)	N_b (lb)				
24.0	1.00	2500	4.000	9600				
$0.75\phi N_{cb} = 0$	0.75ϕ (Anc/Anco) $\Psi_{ed,N}\Psi_{c,N}\Psi_{cp,N}$	l _b (Sec. 17.3.1	& Eq. 17.4.2.1a	1)			
A_{Nc} (in ²)	A_{Nco} (in ²	$c_{a,min}$ (in)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	$0.75\phi N_{cb}$ (lb)
103.00	144.00	4.00	0.900	1.00	1.000	9600	0.75	3476

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

 $0.75\phi N_{P^n} = 0.75\phi \Psi_{c,P} N_P = 0.75\phi \Psi_{c,P} 8 A_{brg} f_c$ (Sec. 17.3.1, Eq. 17.4.3.1 & 17.4.3.4)

$\Psi_{c,P}$	A_{brg} (in ²)	f'c (psi)	ϕ	$0.75\phi N_{pn}$ (lb)
1.0	2.10	2500	0.70	22029

Company:	L120 Engineering & Design	Date:	5/3/2018
Engineer:	MRT	Page:	4/4
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2925	20340	0.14	Pass
Concrete breakout	2925	3476	0.84	Pass (Governs)
Pullout	2925	22029	0.13	Pass

PAB5H (5/8"Ø) with hef = 4.000 inch meets the selected design criteria.

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, N _{ua} (lb)	1.2 x Nominal Strength, N₁ (lb)	Ratio		
Steel	2925	32544	9.0 %		
Concrete	Nominal Strength, Nn (lb)	Nominal Strength, Nn (lb)	Ratio		
Concrete breakout	2925	6180	47.3 %	Governs	
Pullout	2925	41960	7.0 %		

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) is not satisfied since steel ratio does not govern.

12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.
- Brittle failure governs for tension. Governing anchor failure mode is brittle failure. Attachment shall be designed to satisfy the requirements of ACI 318-14 Section 17.2.3.4.3 for structures assigned to Seismic Design Category C, D, E, or F when the component of the strength level earthquake force applied to anchors exceeds 20 percent of the total factored anchor force associated with the same load combination. In case when ACI 318-14 Sections 17.2.3.4.3 (a)(iii) to (vi), (b), (c) or (d) is satisfied for tension loading, select appropriate checkbox from Inputs tab to disable this message. Alternatively, Ω 0 factor can be entered to satisfy ACI 318-14 Section 17.2.3.4.3(d) to increase the earthquake portion of the loads as required.
- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied designer to verify.
- Designer must exercise own judgement to determine if this design is suitable.

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	1/4
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description: 3/4" DIA Anchor

2. Input Data & Anchor Parameters

General

Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place

Material: AB

Diameter (inch): 0.750

Effective Embedment depth, hef (inch): 12.000

Anchor category: -Anchor ductility: Yes h_{min} (inch): 14.25 C_{min} (inch): 1.63 S_{min} (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 0.9D + 1.0E

Seismic design: Yes

Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied

Ductility section for shear: 17.2.3.5.2 not applicable

 Ω_0 factor: not set

Apply entire shear load at front row: No

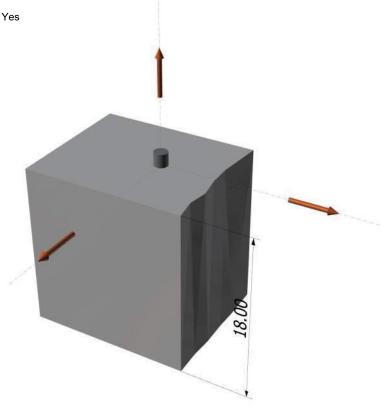
Anchors only resisting wind and/or seismic loads: Yes

<Figure 1>

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00


State: Cracked

Compressive strength, f'c (psi): 2500

Ψ_{c,V}: 1.0

Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: No

Ignore 6do requirement: Yes Build-up grout pad: No

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	2/4
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB6 (3/4"Ø)

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	3/4
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (Ib)
1	13050.0	0.0	0.0	0.0
Sum	13050 0	0.0	0.0	0.0

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 0 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N_{sa} (lb)	ϕ	ϕN_{Sa} (lb)
19370	0.75	14528

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

 $0.75\phi N_{pn} = 0.75\phi \Psi_{c,P} N_p = 0.75\phi \Psi_{c,P} 8A_{brg} f_c$ (Sec. 17.3.1, Eq. 17.4.3.1 & 17.4.3.4)

$\Psi_{c,P}$	A _{brg} (In ²)	f'c (psi)	ϕ	$0.75 \phi N_{pn}$ (lb)
1.0	3.53	2500	0.70	37107

Company:	L120 Engineering & Design	Date:	1/14/2018	
Engineer:	MRT Page: 4/4			
Project:	Hold-down Anchors			
Address:				
Phone:				
E-mail:				

7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

 $0.75 \phi N_{sb} = 0.75 \phi \{ (1 + c_{a2}/c_{a1})/4 \} (160 c_{a1} \sqrt{A_{brg}}) \lambda \sqrt{f'_c} \text{ (Sec. 17.3.1 \& Eq. 17.4.4.1)}$

Ca1 (in)	c _{a2} (in)	A_{brg} (in ²)	λa	f'c (psi)	ϕ	$0.75\phi N_{sbg}$ (lb)
4.00	6.00	3.53	1.00	2500	0.75	21149

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	13050	14528	0.90	Pass (Governs)
Pullout	13050	37107	0.35	Pass
Side-face blowout	13050	21149	0.62	Pass

PAB6 (3/4"Ø) with hef = 12.000 inch meets the selected design criteria.

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, N _{ua} (lb)	1.2 x Nominal Strength, Nn (lb)	Ratio	
Steel	13050	23244	56.1%	Governs
Concrete	Nominal Strength, N _n (lb)	Nominal Strength, N _n (lb)	Ratio	
Pullout	13050	70680	18.5%	
Side-face blowout	13050	37598	34.7%	

 $ACI\ 318-14\ Section\ 17.2.3.4.3(a)\ (i)\ \&\ (ii)\ satisfied\ since\ steel\ ratio\ governs\ and\ the\ steel\ element\ is\ ductile.$

12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.
- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.
- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied designer to verify.
- Designer must exercise own judgement to determine if this design is suitable.

Company:	L120 Engineering & Design	Date:	1/14/2018	
Engineer:	MRT Page: 1/5			
Project:	Hold-down Anchors			
Address:				
Phone:				
E-mail:				

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

7/8" DIA Anchor

2. Input Data & Anchor Parameters

General

Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place

Material: AB_H Diameter (inch): 0.875

Effective Embedment depth, hef (inch): 12.000

Anchor category: -Anchor ductility: Yes h_{min} (inch): 14.38 C_{min} (inch): 1.75 S_{min} (inch): 3.50

Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 0.9D + 1.0E

Seismic design: Yes

Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied

Ductility section for shear: 17.2.3.5.2 not applicable

 Ω_0 factor: not set

Apply entire shear load at front row: No

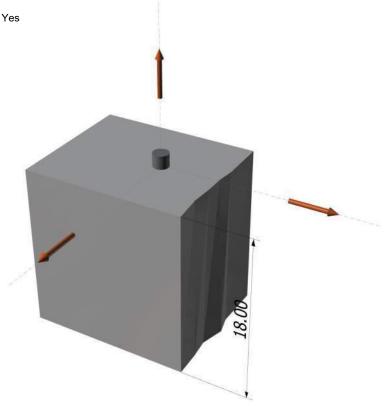
Anchors only resisting wind and/or seismic loads: Yes

<Figure 1>

Base Material

Concrete: Normal-weight

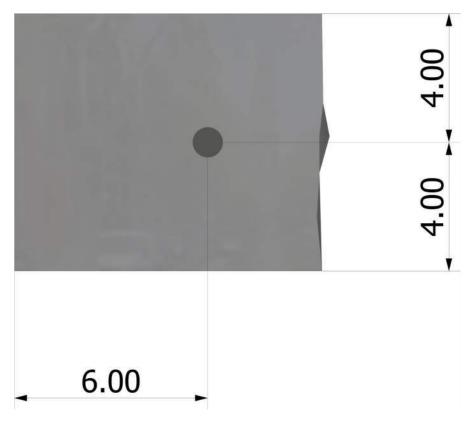
Concrete thickness, h (inch): 18.00


State: Cracked

Compressive strength, f'c (psi): 2500

Ψ_{c,V}: 1.0

Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: No


Ignore 6do requirement: Yes Build-up grout pad: No

Company:	L120 Engineering & Design	Date:	1/14/2018	
Engineer:	MRT	Page:	2/5	
Project:	Hold-down Anchors			
Address:				
Phone:				
E-mail:				

<Figure 2>

Recommended Anchor

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB7H (7/8"Ø)

Company:	L120 Engineering & Design	Date:	1/14/2018	
Engineer:	MRT Page: 3/5			
Project:	Hold-down Anchors			
Address:				
Phone:				
E-mail:				

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	18000.0	0.0	0.0	0.0
Sum	18000 0	0.0	0.0	0.0

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 0 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	ϕ	ϕN_{Sa} (lb)
55440	0.75	41580

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

 $0.75\phi N_{pn} = 0.75\phi \Psi_{c,P} N_p = 0.75\phi \Psi_{c,P} 8A_{brg} f_c$ (Sec. 17.3.1, Eq. 17.4.3.1 & 17.4.3.4)

$arPsi_{c,P}$	A_{brg} (In ²)	r _c (psi)	ϕ	$0.75\phi N_{pn}$ (lb)
1.0	4.07	2500	0.70	42683

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	4/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:		•	

7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

 $0.75\phi N_{sb} = 0.75\phi \{ (1+c_{a2}/c_{a1})/4 \} (160c_{a1}\sqrt{A_{brg}}) \lambda \sqrt{f'_c} \text{ (Sec. 17.3.1 \& Eq. 17.4.4.1)}$

Ca1 (in)	C _{a2} (in)	A_{brg} (in ²)	λa	f_c (psi)	ϕ	$0.75\phi N_{sbg}$ (lb)
4.00	6.00	4.07	1.00	2500	0.75	22682

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	18000	41580	0.43	Pass
Pullout	18000	42683	0.42	Pass
Side-face blowout	18000	22682	0.79	Pass (Governs)

PAB7H (7/8"Ø) with hef = 12.000 inch meets the selected design criteria.

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, Nua (lb)	1.2 x Nominal Strength, N _n (lb)	Ratio		
Steel	18000	66528	27.1%		
Concrete	Nominal Strength, N _n (lb)	Nominal Strength, N _n (lb)	Ratio		
Pullout	18000	81300	22.1%		
Side-face blowout	18000	40324	44.6%	Governs	

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) is not satisfied since steel ratio does not govern.

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	5/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.
- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.
- Brittle failure governs for tension. Governing anchor failure mode is brittle failure. Attachment shall be designed to satisfy the requirements of ACI 318-14 Section 17.2.3.4.3 for structures assigned to Seismic Design Category C, D, E, or F when the component of the strength level earthquake force applied to anchors exceeds 20 percent of the total factored anchor force associated with the same load combination. In case when ACI 318-14 Sections 17.2.3.4.3 (a)(iii) to (vi), (b), (c) or (d) is satisfied for tension loading, select appropriate checkbox from Inputs tab to disable this message. Alternatively, Ω 0 factor can be entered to satisfy ACI 318-14 Section 17.2.3.4.3(d) to increase the earthquake portion of the loads as required.
- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied designer to verify.
- Designer must exercise own judgement to determine if this design is suitable.

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	1/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:		•	

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location:

Fastening description:

1" DIA Anchor

2. Input Data & Anchor Parameters

General

Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place

Material: AB H Diameter (inch): 1.000

Effective Embedment depth, hef (inch): 15.000

Anchor category: -Anchor ductility: Yes h_{min} (inch): 17.63 Cmin (inch): 1.88 S_{min} (inch): 4.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: No

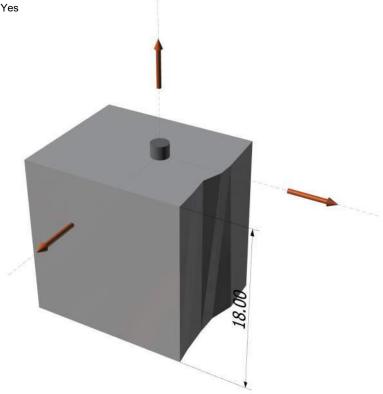
Ignore 6do requirement: Yes Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 0.9D + 1.0E

Seismic design: Yes

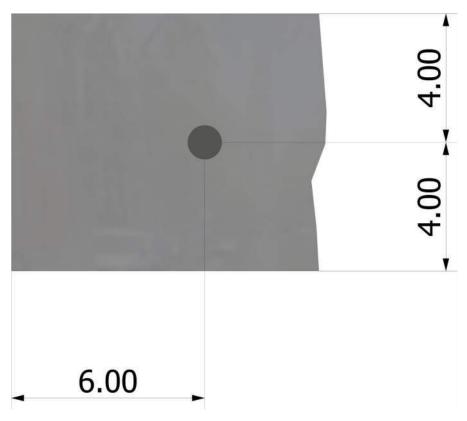
Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied


Ductility section for shear: 17.2.3.5.2 not applicable

 Ω_0 factor: not set

Apply entire shear load at front row: No

Anchors only resisting wind and/or seismic loads: Yes


<Figure 1>

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	2/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB8H (1"Ø)

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	3/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (Ib)
1	22500.0	0.0	0.0	0.0
Sum	22500.0	0.0	0.0	0.0

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 0 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	ϕ	ϕN_{Sa} (lb)
72720	0.75	54540

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

 $0.75\phi N_{pn} = 0.75\phi \Psi_{c,P} N_p = 0.75\phi \Psi_{c,P} 8A_{brg} f_c$ (Sec. 17.3.1, Eq. 17.4.3.1 & 17.4.3.4)

$arPsi_{ extsf{c}, extsf{P}}$	A_{brg} (In ²)	r _c (psi)	ϕ	$0.75\phi N_{pn}$ (lb)
1.0	5.15	2500	0.70	54117

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	4/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

 $0.75\phi N_{sb} = 0.75\phi \{ (1+c_{a2}/c_{a1})/4 \} (160c_{a1}\sqrt{A_{brg}}) \lambda \sqrt{f'_c} \text{ (Sec. 17.3.1 \& Eq. 17.4.4.1)}$

c _{a1} (in)	c _{a2} (in)	A_{brg} (in ²)	λa	f'c (psi)	ϕ	$0.75\phi N_{sbg}$ (lb)
4.00	6.00	5.15	1.00	2500	0.75	25540

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	22500	54540	0.41	Pass
Pullout	22500	54117	0.42	Pass
Side-face blowout	22500	25540	0.88	Pass (Governs)

PAB8H (1"Ø) with hef = 15.000 inch meets the selected design criteria.

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, Nua (lb)	1.2 x Nominal Strength, N _n (lb)	Ratio		
Steel	22500	87264	25.8%		
Concrete	Nominal Strength, N _n (lb)	Nominal Strength, N _n (lb)	Ratio		
Pullout	22500	103080	21.8%		
	22500	45405	49.6%	Governs	

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) is not satisfied since steel ratio does not govern.

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	5/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.
- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.
- Brittle failure governs for tension. Governing anchor failure mode is brittle failure. Attachment shall be designed to satisfy the requirements of ACI 318-14 Section 17.2.3.4.3 for structures assigned to Seismic Design Category C, D, E, or F when the component of the strength level earthquake force applied to anchors exceeds 20 percent of the total factored anchor force associated with the same load combination. In case when ACI 318-14 Sections 17.2.3.4.3 (a)(iii) to (vi), (b), (c) or (d) is satisfied for tension loading, select appropriate checkbox from Inputs tab to disable this message. Alternatively, Ω 0 factor can be entered to satisfy ACI 318-14 Section 17.2.3.4.3(d) to increase the earthquake portion of the loads as required.
- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied designer to verify.
- Designer must exercise own judgement to determine if this design is suitable.

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	1/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			•

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Location: Fastening description:

Project description:

1 1/8" DIA Anchor

2. Input Data & Anchor Parameters

General

Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place

Material: AB

Diameter (inch): 1.125

Effective Embedment depth, hef (inch): 15.000

Anchor category: -Anchor ductility: Yes h_{min} (inch): 17.75 C_{min} (inch): 2.13 S_{min} (inch): 4.50

Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 0.9D + 1.0E

Seismic design: Yes

Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied

Ductility section for shear: 17.2.3.5.2 not applicable

 Ω_0 factor: not set

Apply entire shear load at front row: No

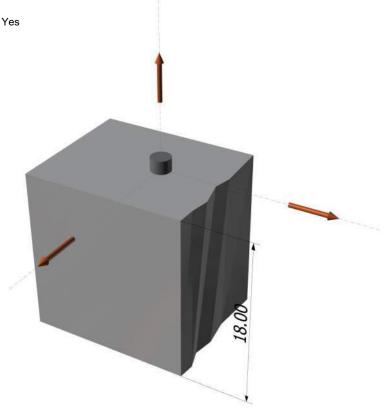
Anchors only resisting wind and/or seismic loads: Yes

<Figure 1>

Base Material

Concrete: Normal-weight

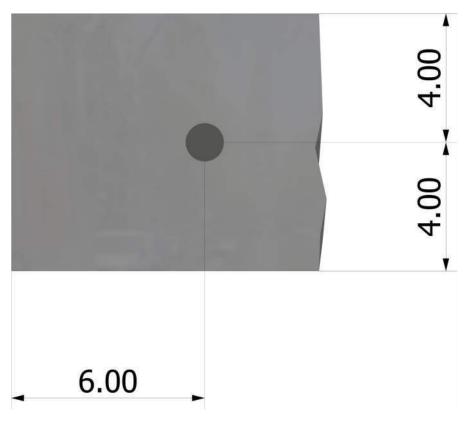
Concrete thickness, h (inch): 18.00


State: Cracked

Compressive strength, f'c (psi): 2500

Ψ_{c,V}: 1.0

Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: No


Ignore 6do requirement: Yes Build-up grout pad: No

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	2/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB9 (1 1/8"Ø)

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	3/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	27900.0	0.0	0.0	0.0	
Sum	27900.0	0.0	0.0	0.0	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 0 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N_{sa} (lb)	ϕ	ϕN_{Sa} (lb)
44255	0.75	33191

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

 $0.75\phi N_{P^n} = 0.75\phi \Psi_{c,P} N_P = 0.75\phi \Psi_{c,P} 8A_{brg} f_c$ (Sec. 17.3.1, Eq. 17.4.3.1 & 17.4.3.4) A_{hm} (in²) f'_{o} (nsi)

$arPsi_{c,P}$	Abrg (In-)	Tc (psi)	ϕ	$0.75\phi N_{pn}$ (Ib)
1.0	6.37	2500	0.70	66885

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	4/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

 $0.75\phi N_{sb} = 0.75\phi \{ (1+c_{a2}/c_{a1})/4 \} (160c_{a1}\sqrt{A_{brg}}) \lambda \sqrt{f'_c} \text{ (Sec. 17.3.1 \& Eq. 17.4.4.1)}$

Ca1 (in)	c _{a2} (in)	A_{brg} (in ²)	λa	f_c (psi)	ϕ	$0.75 \phi N_{sbg}$ (lb)
4.00	6.00	6.37	1.00	2500	0.75	28394

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	27900	33191	0.84	Pass
Pullout	27900	66885	0.42	Pass
Side-face blowout	27900	28394	0.98	Pass (Governs)

PAB9 (1 1/8"Ø) with hef = 15.000 inch meets the selected design criteria.

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, N _{ua} (lb)	1.2 x Nominal Strength, N _n (lb)	Ratio		
Steel	27900	53106	52.5%		
Concrete	Nominal Strength, N _n (lb)	Nominal Strength, N _n (lb)	Ratio		
Pullout	27900	127400	21.9%		
Side-face blowout	27900	50478	55.3%	Governs	

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) is not satisfied since steel ratio does not govern.

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	5/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.
- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.
- Brittle failure governs for tension. Governing anchor failure mode is brittle failure. Attachment shall be designed to satisfy the requirements of ACI 318-14 Section 17.2.3.4.3 for structures assigned to Seismic Design Category C, D, E, or F when the component of the strength level earthquake force applied to anchors exceeds 20 percent of the total factored anchor force associated with the same load combination. In case when ACI 318-14 Sections 17.2.3.4.3 (a)(iii) to (vi), (b), (c) or (d) is satisfied for tension loading, select appropriate checkbox from Inputs tab to disable this message. Alternatively, Ω 0 factor can be entered to satisfy ACI 318-14 Section 17.2.3.4.3(d) to increase the earthquake portion of the loads as required.
- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied designer to verify.
- Designer must exercise own judgement to determine if this design is suitable.

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	1/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

1 1/4" DIA Anchor

2. Input Data & Anchor Parameters

General

Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place

Material: AB

Diameter (inch): 1.250

Effective Embedment depth, hef (inch): 15.000

Anchor category: -Anchor ductility: Yes h_{min} (inch): 18.00 C_{min} (inch): 2.25 S_{min} (inch): 5.00

Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 0.9D + 1.0E

Seismic design: Yes

Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied

Ductility section for shear: 17.2.3.5.2 not applicable

 Ω_0 factor: not set

Apply entire shear load at front row: No

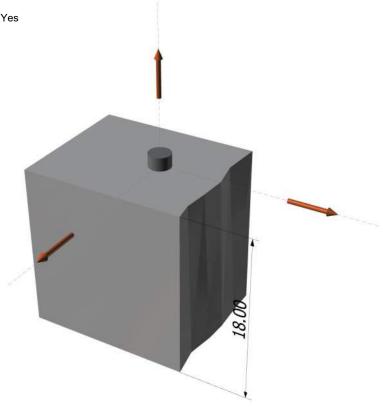
Anchors only resisting wind and/or seismic loads: Yes

<Figure 1>

Base Material

Concrete: Normal-weight

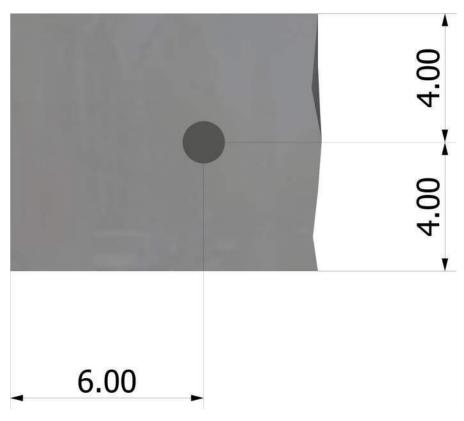
Concrete thickness, h (inch): 18.00


State: Cracked

Compressive strength, f'c (psi): 2500

Ψ_{c,V}: 1.0

Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: No


Ignore 6do requirement: Yes Build-up grout pad: No

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	2/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB10 (1 1/4"Ø)

Company:	L120 Engineering & Design Date: 1/14/20		
Engineer:	MRT	Page:	3/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	31500.0	0.0	0.0	0.0	
Sum	31500.0	0.0	0.0	0.0	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 0

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e^i_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e^i_{Ny} (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	ϕ	ϕN_{Sa} (lb)
56200	0.75	42150

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

 $0.75\phi N_{pn} = 0.75\phi \Psi_{c,P} N_p = 0.75\phi \Psi_{c,P} 8A_{brg} f_c$ (Sec. 17.3.1, Eq. 17.4.3.1 & 17.4.3.4)

$\Psi_{c,P}$	A_{brg} (in ²)	f'c (psi)	ϕ	$0.75\phi N_{pn}$ (lb)
1.0	8.39	2500	0.70	88137

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	4/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

 $0.75\phi N_{sb} = 0.75\phi \{ (1+c_{a2}/c_{a1})/4 \} (160c_{a1}\sqrt{A_{brg}}) \lambda \sqrt{f'_c} \text{ (Sec. 17.3.1 \& Eq. 17.4.4.1)}$

Ca1 (in)	c _{a2} (in)	A_{brg} (in ²)	λa	f_c (psi)	ϕ	$0.75\phi N_{sbg}$ (lb)
4.00	6.00	8.39	1.00	2500	0.75	32594

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	31500	42150	0.75	Pass
Pullout	31500	88137	0.36	Pass
Side-face blowout	31500	32594	0.97	Pass (Governs)

PAB10 (1 1/4"Ø) with hef = 15.000 inch meets the selected design criteria.

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, Nua (lb)	1.2 x Nominal Strength, N _n (lb)	Ratio		
Steel	31500	67440	46.7%		
Concrete	Nominal Strength, N _n (lb)	Nominal Strength, N _n (lb)	Ratio		
Pullout	31500	167880	18.8%		
Side-face blowout	31500	57945	54.4%	Governs	

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) is not satisfied since steel ratio does not govern.

Company:	L120 Engineering & Design	Date:	1/14/2018	
Engineer:	MRT	Page:	5/5	
Project:	Hold-down Anchors			
Address:				
Phone:				
E-mail:				

12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.
- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.
- Brittle failure governs for tension. Governing anchor failure mode is brittle failure. Attachment shall be designed to satisfy the requirements of ACI 318-14 Section 17.2.3.4.3 for structures assigned to Seismic Design Category C, D, E, or F when the component of the strength level earthquake force applied to anchors exceeds 20 percent of the total factored anchor force associated with the same load combination. In case when ACI 318-14 Sections 17.2.3.4.3 (a)(iii) to (vi), (b), (c) or (d) is satisfied for tension loading, select appropriate checkbox from Inputs tab to disable this message. Alternatively, Ω 0 factor can be entered to satisfy ACI 318-14 Section 17.2.3.4.3(d) to increase the earthquake portion of the loads as required.
- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied designer to verify.
- Designer must exercise own judgement to determine if this design is suitable.

Hand-rail Calculations

PROJECT NO.	SHEET NO.

PROJECT ___

SUBJECT _ GuardRail Design

BY _____ DATE ___/ /___

End Post Anchor Bolt Design:

$$Pv = 25 lbs$$

Ph = 200 lbs

h1 = 46"

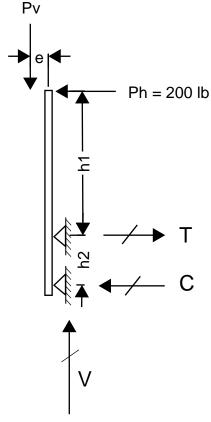
h2 = 5.5"

e = 1.5"

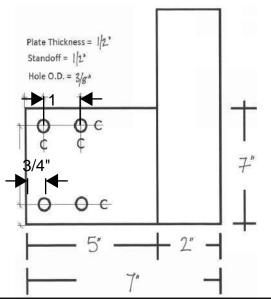
Anchor Moment
$$Mx = Pv(e) + Ph (h1 + h2/2)$$

= 25 x 1.5 + 200x (46+5.5/2)
= 9788 #"

$$My = 200 \# x 4.5" = 900 \#"$$


Anchor Forces T =
$$[Pv (e) + Ph (h1+h2)] / h2 + My/1.5"$$

= 2480 #


Anchor Forces
$$C = T - Ph$$

= 2280 #

Each Bolt Force
$$T = T / 2 = 1240 \#$$

 $V = Pv / 4 + Pv \times 4.5"/(4x2.85") = 16 \#$

Wood Lag Screw: 3/8" dia with 3" min. embed into DF beam.

Withdrawal Wa = $305 \# / " \times 1.6 \times 3" = 1460 \# > T$ O.K. Shear Za = 180 # x 1.6 = 280 # O.K.

ENGINEERING & DESIGN

PROJECT NO.	SHEET NO.

PROJECT __

SUBJECT _ GuardRail Design

BY _____ DATE ___/ /___

Middle Post Anchor Bolt Design:

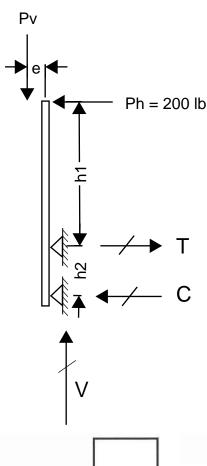
$$Pv = 25 lbs$$

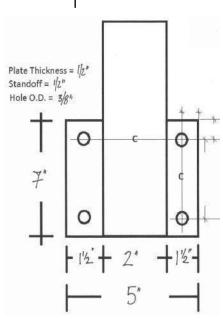
$$Ph = 250 lbs$$

$$h1 = 46$$
"

$$h2 = 5.5$$
"

$$e = 1.5$$
"


Anchor Moment M =
$$Pv(e)$$
 + Ph (h1 + h2/2)
= 25 x 1.5 + 250 (46+5.5/2)
= 12,250


Anchor Forces
$$T = [Pv (e) + Ph (h1+h2)] / h2$$

= 2347 #

Each Bolt Force
$$T = T/2 = 1174 \# V = Pv/4 = 6 \#$$

Wood Lag Screw: 3/8" dia with 3" min. embed into DF beam.

Withdrawal Wa =
$$305 \#/$$
" x 1.6 x 3" = $1460 \# >$ T O.K. Shear Za = $180 \# x 1.6 = 280 \#$ O.K.

PROJECT NO.	SHEET NO.

PROJECT _____

SUBJECT _ GuardRail Design

BY _____ DATE ___/ /

Mounting Plate Design:

Apply Forces: Mx = 9788 #"

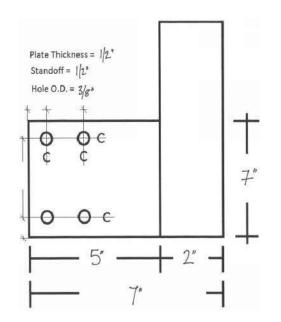
My = 900 #T = 200 #V = 25 #

Try 1/2" thick Plate

Plate Bending Stress: fbx = Mx/2/Sx

 $= 9788/2/(1/4 \times 5" \times (1/2)^2)$

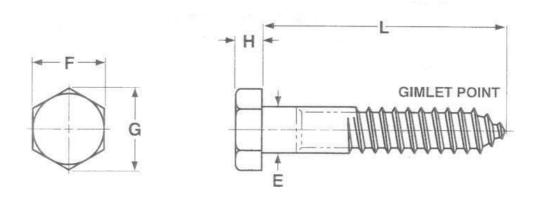
= 15,660 psi


fby = My/Sy

 $= 900/(1/4 \times 7" \times (1/2)^2)$

= 2,057 psi

For Plate 6061-T6 Fb =35 ksi / 1.65 = 21,200 psi > fb O.K.


Plate Combined Stress fbx/Fb + fby/Fb = 0.83 < 1.0 O.K.

Page 1 of 1	Fastenal Product Standard	REV-00
Date: January 11, 2012	FASTENAL	LAG.HDG

Hex Lag Screws, Hot Dipped Galvanized

The information below lists the required dimensional, chemical and physical characteristics of the products in this purchase order. If the order received does not meet these requirements, it may result in a supplier corrective action request, which could jeopardize your status as an approved vendor. Unless otherwise specified, all referenced consensus standards must be adhered to in their entirety.

	- E	E	F	=	(G	F	ł
Diameter	Body D	iameter	Width Acr	oss Flats		Across ners	Hei	ght
	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.
10	.199	.178	.281	.271	.323	.309	.140	.110
1/4	.260	.237	.438	.425	.505	.484	.188	.150
5/16	.324	.298	.500	.484	.577	.552	.235	.195
3/8	.388	.360	.562	.544	.650	.620	.268	.226
7/16	.452	.421	.625	.603	.722	.687	.316	.272
1/2	.515	.482	.750	.725	.866	.826	.364	.302
5/8	.642	.605	.938	.906	1.083	1.033	.444	.378
3/4	.768	.729	1.125	1.088	1.299	1.240	.524	.455
7/8	.895	.852	1.312	1.269	1.516	1.447	.604	.531
1	1.022	.976	1.500	1.450	1.732	1.653	.700	.591
1 1/8	1.149	1.098	1.688	1.631	1.949	1.859	.780	.658
1 1/4	1.277	1.223	1.875	1.812	2.165	2.066	.876	.749

Dimensions above are prior to coating

Specification Requirements:

• Dimensions: ASME B18.2.1.

• Material: Per ASTM A307, Grade A

• Thread requirements: The minimum thread length must be equal to one half the nominal

Screw length plus $\frac{1}{2}$ ", or 6 inch, whichever is shorter. Screws too short to conform to this formula must be threaded as close to the head

as possible.

• Coating: Hot Dip Zinc per ASTM F2329 or in accordance with Class C of

ASTM A153 and Class D for 3/8" diameter and less.

ONGITUDE

ONE TWENTY^o

ENGINEERING & DESIGN

PROJECT				
SUBJECT				
3Y	DATE _	/	/	

PROJECT NO.

Table 2.3.2 Frequently Used Load Duration Factors, C_D¹

Load Duration	$C_{\mathbf{D}}$	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact ²	2.0	Impact Load

- Load duration factors shall not apply to reference modulus of elasticity, E, reference modulus of elasticity for beam and column stability, E_{max}, nor to reference compression perpendicular to grain design values, F_{±+} based on a deformation limit.
- Load duration factors greater than 1.6 shall not apply to structural members pressure-treated with water-borne preservatives (see Reference 30), or fire retardant chemicals. The impact load duration factor shall not apply to connections.

2.3.3 Temperature Factor, Ct

Reference design values shall be multiplied by the temperature factors, C_t, in Table 2.3.3 for structural members that will experience sustained exposure to elevated temperatures up to 150°F (see Appendix C).

2.3.4 Fire Retardant Treatment

The effects of fire retardant chemical treatment on strength shall be accounted for in the design. Adjusted design values, including adjusted connection design values, for lumber and structural glued laminated timber pressure-treated with fire retardant chemicals shall be obtained from the company providing the treatment and redrying service. Load duration factors greater than 1.6 shall not apply to structural members pressure-treated with fire retardant chemicals (see Table 2.3.2).

2.3.5 Format Conversion Factor, K_F (LRFD Only)

For LRFD, reference design values shall be multiplied by the format conversion factor, K_F , specified in Table 2.3.5. The format conversion factor, K_F , shall not apply for designs in accordance with ASD methods specified herein.

2.3.6 Resistance Factor, (LRFD Only)

For LRFD, reference design values shall be multiplied by the resistance factor, ϕ , specified in Table 2.3.6. The resistance factor, ϕ , shall not apply for designs in accordance with ASD methods specified herein.

2.3.7 Time Effect Factor, λ (LRFD Only)

For LRFD, reference design values shall be multiplied by the time effect factor, λ , specified in Appendix N.3.3. The time effect factor, λ , shall not apply for designs in accordance with ASD methods specified herein.

DESIGN VALUES FOR STRUCTURAL MEMBERS

Table 2.3.3	Temperature Fac	ctor, Ct		
Reference Design			Ct	
Values	Moisture Conditions	T≤100°F	100°F <t≤125°f< th=""><th>125°F<t≤150°f< th=""></t≤150°f<></th></t≤125°f<>	125°F <t≤150°f< th=""></t≤150°f<>
F _t , E, E _{min}	Wet or Dry	1.0	0.9	0.9
E E E and E	Dry	1.0	0.8	0.7

Ph. Fv., Fc. and Pc. Wet 1.0 0.7 0.5

1. Wet and dry service conditions for sawn lumber, structural glued laminated timber, prefabricated wood 1-joists, structural composite lumber, wood structural panels and cross-laminated timber are specified in 4.1.4, 5.1.4, 7.1.4, 8.1.4, 9.3.3, and 10.1.5 respectively.

PROJECT NO.	SHEET NO.

PROJECT				
SUBJECT				
BY	DATE	/	/	

				ASD	and l	LRFD					RFD Only	
Load Duration Factor 1	Wet Service Factor	Temperature Factor	Group Action Factor	Geometry Factor 3	Penetration Depth Factor 3	End Grain Factor 3	Metal Side Plate Factor 3	Diaphragm Factor ³	Toe-Nail Factor 3	4 Format Conversion Factor	Resistance Factor	Time Effect Factor
(d) (d)	Lat	eral I	oads		97 5	ar 16	4	2 16				
CD	См	C_{t}	C_{g}	C_{Δ}	83	C_{eg}	(A)	C_{di}	$C_{\rm tn}$	3.32	0.65	λ
C _D	C _M	C _t	C_g	C_{Δ}	C_d	<u> 191</u>	C _{st.}	12	-			
C _D	C _M	C _t	30 m	7. - 2	10 H2	8 7	Cst 4	13 16	31 2 31			
CD	См	C_{t}	853	C_{Δ}	75	38	12.Th	107	(850)	3.32	0.65	λ
	C _D	C _D C _M	C _D C _M C _t C _t	C _D C _M C _t C _g C _D C _M C _t C _g C _D C _M C _t C _g C _D C _M C _t - C _D C _M C _t C _t	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						

- 1. The load duration factor, CD, shall not exceed 1.6 for connections (see 11.3.2).
- 2. The wet service factor, C_{Ms} shall not apply to toe-nails loaded in withdrawal (see 12.5.4.1).
- Specific information concerning geometry factors C_A, penetration depth factors C_d, end grain factors, C_{eg}, metal side plate factors, C_{st}, diaphragm factors, C_d, and toe-nail factors, C_{tm} is provided in Chapters 12, 13, and 14.
- 4. The metal side plate factor, Ca, is only applied when rivet capacity (Pr, Qr) controls (see Chapter 14).
- The geometry factor, C_{Δi} is only applied when wood capacity, Q_{wi} controls (see Chapter 14).

11.3.2 Load Duration Factor, CD (ASD Only)

Reference design values shall be multiplied by the load duration factors, $C_D \leq 1.6$, specified in 2.3.2 and Appendix B, except when the capacity of the connection is controlled by metal strength or strength of concrete/masonry (see 11.2.3, 11.2.4, and Appendix B.3). The impact load duration factor shall not apply to connections.

11.3.3 Wet Service Factor, C_M

Reference design values are for connections in wood seasoned to a moisture content of 19% or less and used under continuously dry conditions, as in most covered structures. For connections in wood that is unseasoned or partially seasoned, or when connections are exposed to wet service conditions in use, reference design values shall be multiplied by the wet service factors, C_{us} , specified in Table 11.3.3.

11.3.4 Temperature Factor, Ct

Reference design values shall be multiplied by the temperature factors, C, in Table 11.3.4 for connections that will experience sustained exposure to elevated temperatures up to 150°F (see Appendix C).

LONGITUDE
ONE TWENTY°

ENGINEERING & DESIGN

PROJECT			
SUBJECT			
BY	DATE	/	/

PROJECT NO.

SHEET NO.

Table 12.2A Lag Screw Reference Withdrawal Design Values, W1

Tabulated withdrawal design values (W) are in pounds per inch of thread penetration into side grain of wood member. Length of thread penetration in main member shall not include the length of the tapered tip (see 12.2.1.1).

Specific Gravity,		500 S20		2	Lag Sci	rew Diam	eter, D	100	100		10
G^2	1/4"	5/16"	3/8"	7/16"	1/2"	5/8"	3/4"	7/8"	1"	1-1/8"	1-1/4
0.73	397	469	538	604	668	789	905	1016	1123	1226	1327
0.71	381	450	516	579	640	757	868	974	1077	1176	1273
0.68	357	422	484	543	600	709	813	913	1009	1103	1193
0.67	349	413	473	531	587	694	796	893	987	1078	1167
0.58	281	332	381	428	473	559	641	719	795	869	940
0.55	260	307	352	395	437	516	592	664	734	802	868
0.51	232	274	34	353	390	461	528	593	656	716	775
0.50	225	266	305	342	378	447	513	576	636	695	752
0.49	218	258	Look	332	367	434	498	559	617	674	730
0.47	205	242	278	312	345	408	467	525	580	634	686
0.46	199	235	269	302	334	395	453	508	562	613	664
0.44	186	220	252	283	312	369	423	475	525	574	621
0.43	179	212	243	273	302	357	409	459	508	554	600
0.42	173	205	235	264	291	344	395	443	490	535	579
0.41	167	198	226	254	281	332	381	428	473	516	559
0.40	161	190	218	245	271	320	367	412	455	497	538
0.39	155	183	210	236	261	308	353	397	438	479	518
0.38	149	176	202	227	251	296	340	381	422	461	498
0.37	143	169	194	218	241	285	326	367	405	443	479
0.36	137	163	186	209	231	273	313	352	389	425	460
0.35	132	156	179	200	222	262	300	337	373	407	441
0.31	110	130	149	167	185	218	250	281	311	339	367

Tabulated withdrawal design values, W, for lag screw connections shall be multiplied by all applicable adjustment factors (see Table 11.3.1). Specific gravity, G, shall be determined in accordance with Table 12.3.3A.

12.2.3.2 For calculation of the fastener reference withdrawal design value in pounds, the unit reference withdrawal design value in lbs/in. of fastener penetration from 12.2.3.1 shall be multiplied by the length of fastener penetration, pt, into the wood member.

12.2.3.3 The reference withdrawal design value, in lbs/in. of penetration, for a single post-frame ring shank nail driven in the side grain of the main member, with the nail axis perpendicular to the wood fibers, shall be determined from Table 12.2D or Equation 12.2-4, within the range of specific gravities and nail diameters given in Table 12.2D. Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Table 11.3.1) to obtain adjusted withdrawal design values, W'.

$$W = 1800 G^2 D$$
 (12.2-4)

12.2.3.4 For calculation of the fastener reference withdrawal design value in pounds, the unit reference withdrawal design value in lbs/in. of ring shank penetration from 12.2.3.3 shall be multiplied by the length of ring shank penetration, p, into the wood member.

12.2.3.5 Nails and spikes shall not be loaded in withdrawal from end grain of wood (Ceg=0.0).

12.2.3.6 Nails, and spikes shall not be loaded in withdrawal from end-grain of laminations in crosslaminated timber (Ceg=0.0).

12.2.4 Drift Bolts and Drift Pins

Reference withdrawal design values, W, for connections using drift bolt and drift pin connections shall be determined in accordance with 11.1.1.3.

PROJECT NO.	SHEET NO.

PROJECT				
SUBJECT				
BY	DATE _	/	/	

Table 12.3.3A Assigned Specific Gravities

Species Combination	Specific ¹ Gravity, G	Species Combinations of MSR and MEL Lumber	Specific ¹ Gravity, G
Alaska Cedar	0.47	Douglas Fir-Larch	
Alaska Hemlock	0.46	E=1,900,000 psi and lower grades of MSR	0.50
Alaska Spruce	0.41	E=2,000,000 psi grades of MSR	0.51
Alaska Yellow Cedar	0.46	E=2,100,000 psi grades of MSR	0.52
Aspen	0.39	E=2,200,000 psi grades of MSR	0.53
Balsam Fir	0.36	E=2,300,000 psi grades of MSR	0.54
Beech-Birch-Hickory	0.71	E=2,400,000 psi grades of MSR	0.55
Coast Sitka Spruce	0.39	Douglas Fir-Larch (North)	
Cottonwood	0.41	E=1,900,000 psi and lower grades of MSR and MEL	0.49
Douglas Fir-Larch	0.50	E=2,000,000 psi to 2,200,000 psi grades of MSR and MEL	0.53
Douglas Fir-Larch (North)	0.49	E=2,300,000 psi and higher grades of MSR and MEL	0.57
Douglas Fir-South	0.46	Douglas Fir-Larch (South)	
Eastern Hemlock	0.41	E=1,000,000 psi and higher grades of MSR	0.46
Eastern Hemlock-Balsam Fir	0.36	Engelmann Spruce-Lodgepole Pine	
Eastern Hemlock-Tamarack	0.41	E=1,400,000 psi and lower grades of MSR	0.38
Eastern Hemlock-Tamarack (North)	0.47	E=1,500,000 psi and higher grades of MSR	0.46
Eastern Softwoods	0.36	Hem-Fir	
Eastern Spruce	0.41	E=1,500,000 psi and lower grades of MSR	0.43
Eastern White Pine	0.36	E=1,600,000 psi grades of MSR	0.44
Engelmann Spruce-Lodgepole Pine	0.38	E=1,700,000 psi grades of MSR	0.45
Hem-Fir	0.43	E=1,800,000 psi grades of MSR	0.46
Hem-Fir (North)	0.46	E=1,900,000 psi grades of MSR	0.47
Mixed Maple	0.55	E=2,000,000 psi grades of MSR	0.48
Mixed Oak	0.68	E=2,100,000 psi grades of MSR	0.49
Mixed Southern Pine	0.51	E=2,200,000 psi grades of MSR	0.50
Mountain Hemlock	0.47	E=2,300,000 psi grades of MSR	0.51
Northern Pine	0.42	E=2,400,000 psi grades of MSR	0.52
Northern Red Oak	0.68	Hem-Fir (North)	0.02
Northern Species	0.35	E=1,000,000 psi and higher grades of MSR and MEL	0.46
Northern White Cedar	0.31	Southern Pine	0.40
Ponderosa Pine	0.43	E=1,700,000 psi and lower grades of MSR and MEL	0.55
Red Maple	0.58	E=1,800,000 psi and higher grades of MSR and MEL	0.57
Red Oak	0.67	Spruce-Pine-Fir	
Red Pine	0.44	E=1,700,000 psi and lower grades of MSR and MEL	0.42
Redwood, close grain	0.44	E=1,800,000 psi and 1,900,000 grades of MSR and MEL	0.46
Redwood, open grain	0.37	E=2,000,000 psi and 1,900,000 grades of MSR and MEL	0.50
Sitka Spruce	0.43	Spruce-Pine-Fir (South)	
Southern Pine	0.55	E=1,100,000 psi and lower grades of MSR	0.36
Spruce-Pine-Fir	0.33	E=1,200,000 psi and lower grades of MSR E=1,200,000 psi to1,900,000 psi grades of MSR	0.42
Spruce-Pine-Fir (South)	0.42	E=2,000,000 psi to1,900,000 psi grades of MSR	0.42
Western Cedars	0.36	Western Cedars	0.50
Western Cedars (North)	0.36	E=1,000,000 psi and higher grades of MSR	0.36
Western Hemlock	0.33	Western Woods	0.30
Western Hemlock (North)	0.47		0.36
Western Hemiock (North) Western White Pine	0.46	E=1,000,000 psi and higher grades of MSR	0.36
Western Woods	0.40		
White Oak	11 5-54-1-1		
White Oak Yellow Poplar	0.73 0.43		

Specific gravity, G, based on weight and volume when oven-dry. Different specific gravities, G, are possible for different grades of MSR and MEL lumber (see Table 4C, Footnote 2).

LONGITUDE
ONE TWENTY°

ENGINEERING & DESIGN

PROJECT			

BY _____ DATE ___/ /___

Table 12K LAG SCREWS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections 1,2,3,4

SHEET NO

for sawn lumber or SCL with ASTM A653, Grade 33 steel side plate (for t_s<1/4") or ASTM A 36 steel side plate (for $t_s=1/4$ ")

SUBJECT

(tabulated lateral design values are calculated based on an assumed length of lag screw penetration, p, into the main member equal to 8D)

Gida Marribar	Thickness	Lag Screw Diameter	G=0.67	Red Oak	G=0.55	Southern Pine	G=0.5	Douglas Fir-Larch	G=0.49 Dougles Fird arch		G=0.46 Devotes Fie/S)	Hem-Fir(N)	G=0.43	Hem-Fir	G=0.42	Spruce-Pine-Fir	G=0.37	(open grain)	G=0.36 Eastern Softwoods	Western Woods	G=0.35	Northern Species
	t _s	D in.	Z _{II}	Z ₁	Z _{ii}	Z ₁	Z _{II}	Z ₁	Z _{II}	Z ₁	Z _{II}	Z ₁	Z _{II}	Z ₁	Z _{II}	Z ₁	Z _{II}	Z ₁	Z _{II}	Z ₁	Z _{II}	Z ₁
	.075	1/4	170	130	160	120	150	110	150	110	150	100	140	100	140	100	130	90	130	90	130	90
	gage)	5/16	220	160	200	140	190	130	190	130	190	130	180	120	180	120	170	110	170	110	160	100
(14	yaye	3/8	220	160	200	140	200	130	190	130	190	120	180	120	180	120	170	110	170	100	170	100
- 0	.105	1/4	180	140	170	130	160	120	160	120	160	110	150	110	150	110	140	100	140	100	140	90
	gage)	5/16	230	170	210	150	200	140	200	140	190	130	190	130	190	120	180	110	170	110	170	110
(9-9-/	3/8	230	160	210	140	200	140	200	130	200	130	190	120	190	120	180	110	180	110	170	110
0	.120	1/4	190	150	180	130	170	120	170	120	160	120	160	110	160	110	150	100	150	100	140	100
(11	gage)	5/16	230	170	210	150	210	140	200	140	200	140	190	130	190	130	180	120	180	120	180	110
	5-5-7	3/8	240	170	220	150	210	140	210	140	200	130	200	130	190	120	180	110	180	110	180	110
0	.134	1/4	200	150	180	140	180	130	170	130	170	120	160	120	160	110	150	110	150	100	150	100
(10	gage)	5/16	240	180	220	160	210	150	210	140	200	140	200	130	200	130	190	120	180	120	180	120
		3/8	240	170	220	150	220	140	210	140	210	140	200	130	200	130	190	120	190	120	180	110
0	.179	1/4	220	170	210	150	200	150	200	140	190	140	190	130	190	130	180	120	170	120	170	120
(7	gage)	5/16	260	190	240	170	230	160	230	160	230	150	220	150	220	150	210	130	200	130	200	130
_		3/8	270	190	250	170	240	160	240	160	230	150	220	140	220	140	210	130	210	130	200	130
	.239	1/4	240	180	220	160	210	150	210	150	200	140	190	140	190	130	180	120	180	120	180	120
(3	gage)	5/16	300	220	280	190	270	180	260	180	260	170	250	160	250	160	230	150	230	150	230	140
		3/8	310	220	280	190	270	180	270	180	260	170	250	160	250	160	240	140	230	140	230	140
		7/16	420	290	390	260	380	240	370	240	360	230	350	220	350	220	330	200	330	200	320	190
		1/2	510	340	470	300	460	290	450	280	440	270	430	260	420	260	400	240	400	230	390	230
		5/8	770	490	710	430	680	400	680	400	660	380	640	370	630	360	600	330	590	330	580	320
		3/4 7/8	1110 1510	670 880	1020	590 780	980 1330	560 730	970	550 710	950 1280	530 690	920 1250	500	910	500 650	860 1170	450 590	850 1160	450 590	840 1140	440 570
		1/8	1940	1100	1780	960	1710	910	1320 1700	890	1650	860	1600	650 820	1230 1590	810	1500	740	1480	730	1460	710
_	1/4	1/4	240	180	220	160	210	150	210	150	200	140	200	140	190	130	180	120	180	120	180	120
	1/4	5/16	310	220	280	200	270	180	270	180	260	170	250	170	250	160	230	150	230	150	230	140
		3/8	320	220	290	190	280	180	270	180	270	170	260	160	250	160	240	150	240	140	230	140
		7/16	480	320	440	280	420	270	420	260	410	250	390	240	390	230	370	220	360	210	360	210
		1/2	580	390	540	340	520	320	510	320	500	310	480	290	480	290	460	270	450	260	440	260
		5/8	850	530	780	470	750	440	740	440	720	420	700	400	690	400	660	370	650	360	640	350
		3/4	1200	730	1100	640	1060	600	1050	590	1020	570	990	540	980	530	930	490	920	480	900	470
		7/8	1600	930	1470	820	1410	770	1400	750	1360	720	1320	690	1310	680	1240	630	1220	620	1200	600
		1	2040	1150	1870	1000	1800	950	1780	930	1730	900	1680	850	1660	840	1570	770	1550	760	1530	740

- 1. Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1).
- Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment lateral design values, Z, are for "reduced body diameter" lag screws (see Appendix Table L2) inserted in side grain with screw axis perpendicular to wood fibers; screw penetration, p, into the main member equal to 8D; dowel bearing strengths, F_e, of 61,850 psi for ASTM A653, Grade 33 steel and 87,000 psi for ASTM A36 steel and screw bending yield strengths, F_e, of 70,000 psi for D = 1/4", 60,000 psi for D = 5/16", and 45,000 psi for D ≥3/8".
 Where the lag screw penetration, p, is less than 8D but not less than 4D, tabulated lateral design values, Z, shall be multiplied by p/8D or lateral design values
- shall be calculated using the provisions of 12.3 for the reduced penetration.

 4. The length of lag screw penetration, p, not including the length of the tapered tip, E (see Appendix Table L.2), of the lag screw into the main member shall not be less than 4D. See 12.1.4.6 for minimum length of penetration, p_{min}.

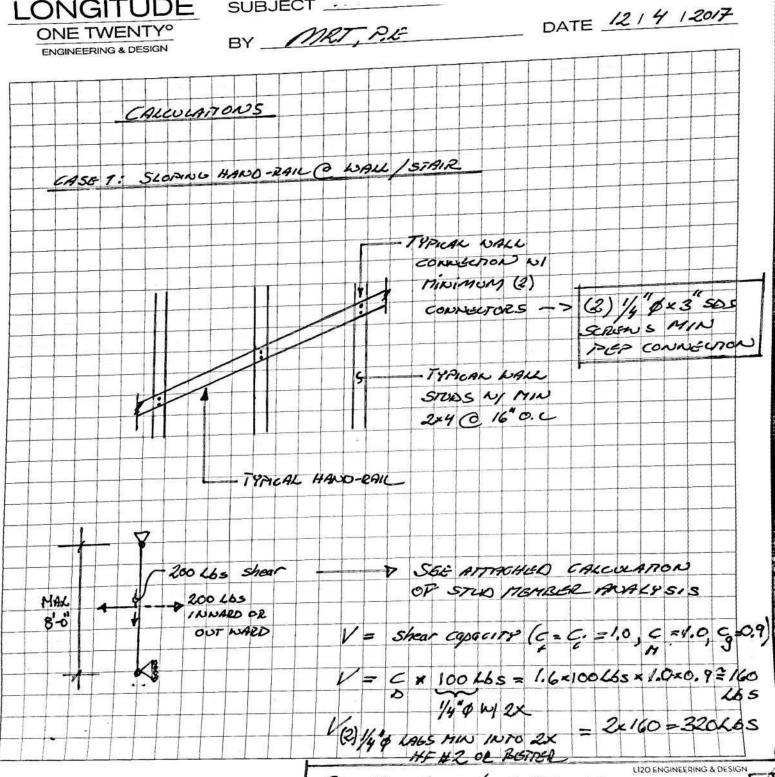
To determine the minimum required hand-rail connections, with a pre-manufactured hand-rail system provided by others. Our scope is limited to assess the minimum connection requirements of the hand-rail system as listed below. Our assumptions are that the base-plates, welds and metal member properties of the pre-manufactured complete system are sufficient in strength to support the code prescribed design loads, for which our design have been provided to comply with.

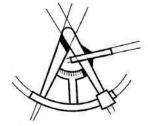

We have analyzed and verified the minimum connection requirements, for the following conditions:

- Wall connection (sloping wall @ stair)

 Result: minimum (2) ¼" DIA x 3" SDS screws to a minimum of (1) support studs at each connection
- Base-plate connection (vertical post application, typical)

 Result: The base-plate column connection to have a minimum of (4) 3/8" x 4 ½ lag-screws into full width support member/beams below
- Wall connection (horizontal typical application)
 Result: (2) ¼" DIA x 3" SDS screws to a minimum of (2) support studs at each connection

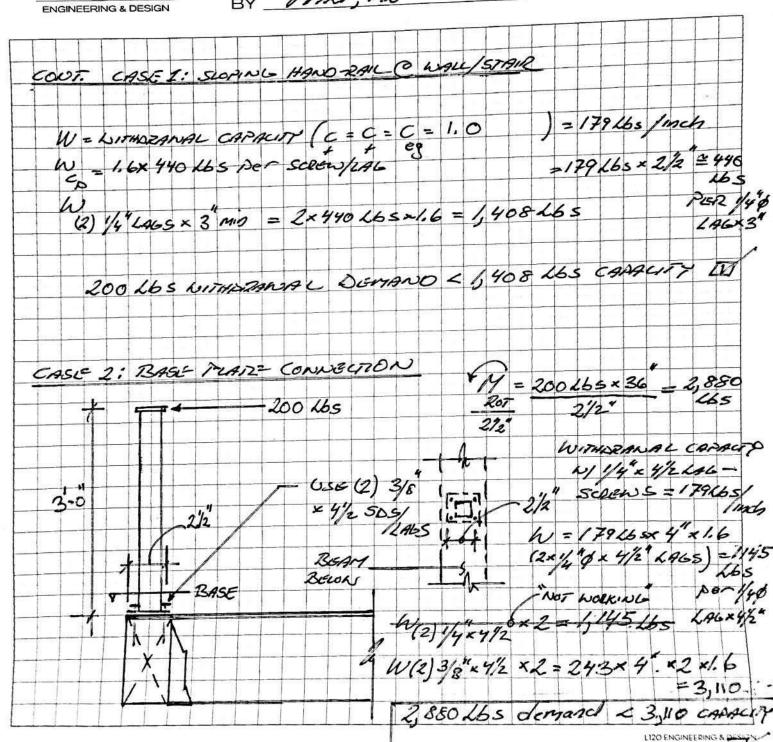


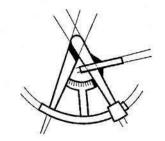

ONE TWENTY°

PROJECT

LONGITUDE SUBJECT

200 Lbs demand < 320 Lbs CAPACITY

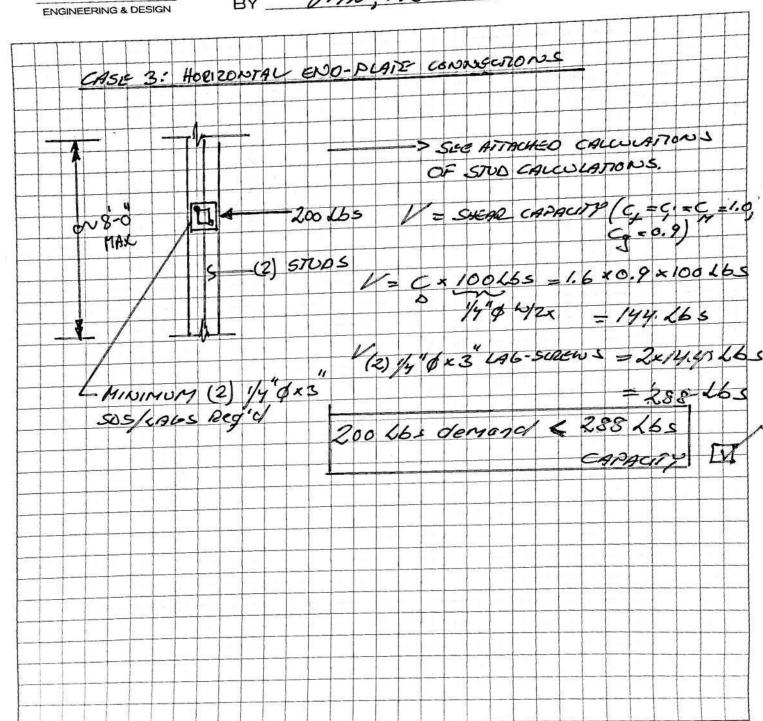

LONGITUDE SUBJECT ____


PROJECT

ONE TWENTY®

BY MRT, P.E

DATE 12/4/2017



PROJECT

ONE TWENTY°

SUBJECT ____

BY _______ DATE 121412014

Company:	L120 Engineering & Design	Date:	5/3/2018
Engineer:	MRT	Page:	1/5
Project:	Hand-rail calculation		
Address:			
Phone:			
E-mail:		•	•

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Concrete screw Material: Carbon Steel Diameter (inch): 0.375

Nominal Embedment depth (inch): 3.250 Effective Embedment depth, her (inch): 2.400

Code report: ICC-ES ESR-2713

Anchor category: 1 Anchor ductility: No h_{min} (inch): 5.00 c_{ac} (inch): 3.63 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 6.00

State: Cracked

Compressive strength, f'c (psi): 2500

Ψ_{c,V}: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: Not applicable

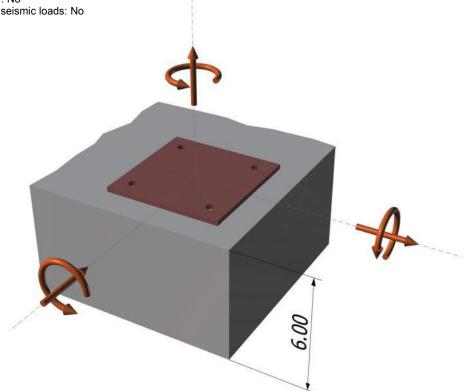
Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): $6.00 \times 6.00 \times 0.25$

Load and Geometry

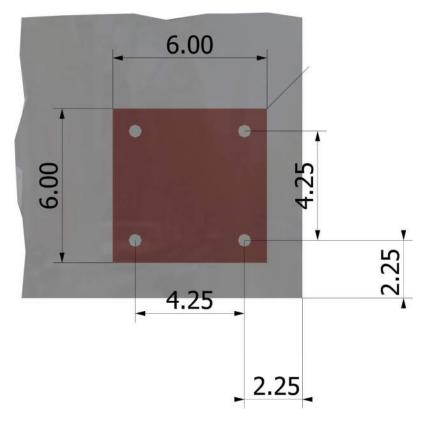
Load factor source: ACI 318 Section 5.3


Load combination: U = 1.2(D + F) + 1.6(L) + 0.5(Lr or S or R)

Seismic design: No

Anchors subjected to sustained tension: Not applicable Apply entire shear load at front row: No

Anchors only resisting wind and/or seismic loads: No


<Figure 1>

Company:	L120 Engineering & Design	Date:	5/3/2018
Engineer:	MRT	Page:	2/5
Project:	Hand-rail calculation		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

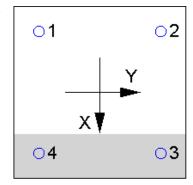
Anchor Name: Titen HD® - 3/8"Ø Titen HD, hnom:3.25" (83mm)

Code Report: ICC-ES ESR-2713

Company:	L120 Engineering & Design	Date:	5/3/2018
Engineer:	MRT	Page:	3/5
Project:	Hand-rail calculation		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	1250.4	-80.0	0.0	80.0
2	1250.4	-80.0	0.0	80.0
3	0.0	-80.0	0.0	80.0
4	0.0	-80.0	0.0	80.0
Sum	2500.7	-320.0	0.0	320.0


Maximum concrete compression strain (%): 0.12 Maximum concrete compression stress (psi): 538

Resultant tension force (lb): 2501

Resultant compression force (lb): 2501

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

Nsa (lb)	ϕ	ϕN_{sa} (lb)	
10890	0.65	7079	

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)

f'c (psi)

 $N_b = k_c \lambda_a \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. 17.4.2.2a)

17.0	1.00	2500	2.400	316	60				
$\phi N_{cbg} = \phi (A$	Nc / ANco) Ψec,N	$\Psi_{ed,N}\Psi_{c,N}\Psi_{cp,N}$	l _b (Sec. 17.3.1	& Eq. 17.4.2	.1b)				
A_{Nc} (in ²)	A_{Nco} (in ²)	c _{a,min} (in)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (It
72 72	51.8/	2 25	1 000	U 888	1.00	1 000	3160	0.65	2557

N_b (lb)

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

 $\phi N_{pn} = \phi \Psi_{c,P} \lambda_a N_p (f'_c / 2,500)^n$ (Sec. 17.3.1, Eq. 17.4.3.1 & Code Report)

$\Psi_{c,P}$	λa	N_p (lb)	f'_c (psi)	n	ϕ	ϕN_{pn} (lb)
1.0	1.00	2700	2500	0.50	0.65	1755

hef (in)

Company:	L120 Engineering & Design	Date:	5/3/2018
Engineer:	MRT	Page:	4/5
Project:	Hand-rail calculation		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. 17.5.1)

V_{sa} (lb)	ϕ_{grout}	ϕ	$\phi_{ extstyle grout} \phi V_{ extstyle sa}$ (lb)	
4460	1.0	0.60	2676	

9. Concrete Breakout Strength of Anchor in Shear (Sec. 17.5.2)

Shear parallel to edge in x-direction:

 $V_{by} = \min |7(I_e/d_a)^{0.2} \sqrt{d_a \lambda_a} \sqrt{f_c c_{a1}}^{1.5}; \ 9\lambda_a \sqrt{f_c c_{a1}}^{1.5}| \ (\text{Eq. 17.5.2.2a \& Eq. 17.5.2.2b})$

le (in)	da (in)	λα	f'c (psi)	Ca1 (in)	V _{by} (lb)
2.40	0.375	1.00	2500	2.25	1049

 $\phi V_{cbgx} = \phi \, (2) (A_{Vc}/A_{Vco}) \, \varPsi_{ec,V} \, \varPsi_{ed,V} \, \varPsi_{c,V} \, \varPsi_{h,V} V_{by} \, (\text{Sec. 17.3.1, 17.5.2.1(c)} \, \& \, \text{Eq. 17.5.2.1b})$

A_{Vc} (in ²)	A_{Vco} (In ²)	$arPsi_{ec, V}$	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$arPsi_{h,V}$	V_{by} (Ib)	ϕ	ϕV_{cbgx} (Ib)
33.33	22.78	1.000	1.000	1.000	1.000	1049	0.70	2148

10. Concrete Pryout Strength of Anchor in Shear (Sec. 17.5.3)

 $\phi V_{cpg} = \phi k_{cp} N_{cbg} = \phi k_{cp} (A_{Nc}/A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b \text{ (Sec. 17.3.1 \& Eq. 17.5.3.1b)}$

Kcp	A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	ϕ	ϕV_{cpg} (lb)
1.0	102.01	51.84	1.000	0.888	1.000	1.000	3160	0.70	3863

11. Results

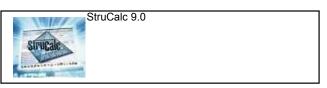
Interaction of Tensile and Shear Forces (Sec. 17.6.)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1250	7079	0.18	Pass
Concrete breakout	2501	2557	0.98	Pass (Governs)
Pullout	1250	1755	0.71	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	80	2676	0.03	Pass
Concrete breakout y+	160	2148	0.07	Pass
Pryout	320	3863	0.08	Pass (Governs)
Interaction check Nua	a∕φNn Vua∕φVn	Combined Rati	o Permissible	Status
Sec. 17.61 0.9	0.00	97.8 %	1.0	Pass

3/8"Ø Titen HD, hnom:3.25" (83mm) meets the selected design criteria.

Company:	L120 Engineering & Design	Date:	5/3/2018
Engineer:	MRT	Page:	5/5
Project:	Hand-rail calculation		
Address:			
Phone:			
E-mail:			

12. Warnings


- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Project:

Location: Single 2x4 stud (staircase) Multi-Loaded Multi-Span Beam

[2015 International Building Code(2015 NDS)]

1.5 IN x 3.5 IN x 8.0 FT #2 - Hem-Fir - Dry Use Section Adequate By: 0.8% Controlling Factor: Deflection

StruCalc Version 10.0.1.6

12/4/2017 4:33:33 PM

DEFLECTIONS	<u>Center</u>	
Live Load C	.53 IN L/181	
Dead Load C	.01 in	
Total Load C	.54 IN L/177	
Live Load Deflecti	on Criteria: L/180 Total Load Deflection Criteria: L/120	

Г	REACTIONS	Δ		R	
Т				ㅁ	
1	Live Load	100	lb	100	lb
1	Dead Load	4	lb	4	lb
l	Total Load	104	lb	104	lb
	Bearing Length	0.17	in	0.17	in

BEAM DATA	Ce	nter
Span Length	8	ft
Unbraced Length-Top	0	ft
Unbraced Length-Bottom	8	ft
Live Load Duration Factor	1	.60
Notch Depth	0	.00

MATERIAL PROPERTIES

#2 - Hem-Fir

	Base	· Values	Ac	<u>ljusted</u>
Bending Stress:	Fb =	850 psi	Fb' =	2040 psi
	Cd=1.6	0 CF=1.50		

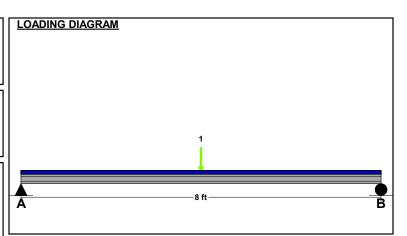
Shear Stress: Fv = 150 psi 240 psi

Cd=1.60

Modulus of Elasticity: E = 1300 ksi E' = 1300 ksi $F_{c} - \bot = 405 \text{ psi}$ Comp. [⊥] to Grain: $Fc - \frac{1}{} = 405 \text{ psi}$

Controlling Moment: 408 ft-lb

4.0 Ft from left support of span 2 (Center Span)


Created by combining all dead loads and live loads on span(s) 2

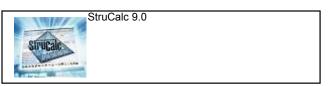
Controlling Shear: -104 lb

At right support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:	Req'd	Provided
Section Modulus:	2.4 in3	3.06 in3
Area (Shear):	0.65 in2	5.25 in2
Moment of Inertia (deflection):	5.32 in4	5.36 in4
Moment:	408 ft-lb	521 ft-lb
Shear:	-104 lb	840 lb

UNIFORM LOADS	<u>Center</u>
Uniform Live Load	0 plf
Uniform Dead Load	0 plf
Beam Self Weight	1 plf
Total Uniform Load	1 plf


POINT LOADS	<u> 3 - CENTI</u>	<u>ER SPAN</u>
Load Number	<u>One</u>	
Live Load	200 lb	
Dead Load	0 lb	
Location	4 ft	

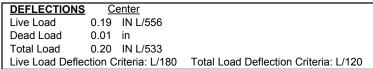
Project:

Location: Single 2x6 stud (staircase) Multi-Loaded Multi-Span Beam

[2015 International Building Code(2015 NDS)]

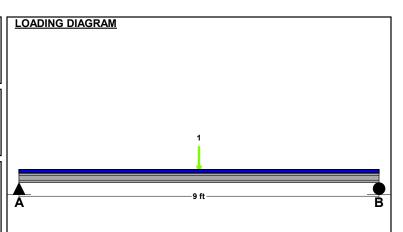
1.5 IN x 5.5 IN x 9.0 FT #2 - Hem-Fir - Dry Use Section Adequate By: 139.3% Controlling Factor: Moment

StruCalc Version 10.0.1.6


Dead Load

Location

0 lb


4.5 ft

12/4/2017 4:34:53 PM

REAC	<u>CTIONS</u>	<u>A</u>		<u>B</u>	
Live L	.oad	100	lb	100	lb
Dead	Load	7	lb	7	lb
Total	Load	107	lb	107	lb
Bearin	ng Length	0.18	in	0.18	in

BEAM DATA	Ce	nter
Span Length	9	ft
Unbraced Length-Top	0	ft
Unbraced Length-Bottom	9	ft
Live Load Duration Factor	1	.60
Notch Depth	0	.00

UNIFORM LOADS	Center	
Uniform Live Load	0 plf	
Uniform Decad Lead	o ie	
Uniform Dead Load	U pir	
D O - If \ \ \ - ! - - \	O16	
Beam Self Weight	2 plf	
T-4-111-161	0 -16	
Total Uniform Load	2 pir	

Beam Self Weigh Total Uniform Loa		•				
POINT LOADS -	CENTE	R SPAN				
Load Number	<u>One</u>					
Live Load 20	00 lb					

MATERIAL PROPERTIES

#2 - Hem-Fir

Bending Stress:	Fb =	850 psi	Fb' =	1768 psi	
	Cd=1.6	60 CF=1.30			
Shear Stress:	Fv =	150 psi	Fv' =	240 psi	

Cd=1.60

Base Values

Adjusted

Modulus of Elasticity: 1300 ksi E' = 1300 ksi Fc - \perp = 405 psi Comp. [⊥] to Grain: Fc - 上 = 405 psi

Controlling Moment: 466 ft-lb

4.5 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear: -107 lb

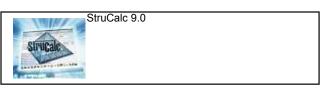
At right support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:	Req'd	<u>Provided</u>
Section Modulus:	3.16 in3	7.56 in3
Area (Shear):	0.67 in2	8.25 in2
Moment of Inertia (deflection):	6.73 in4	20.8 in4
Moment:	466 ft-lb	1114 ft-lb
Shear:	-107 lb	1320 lb

Project:

Location: Double 2x4 stud (flat orientation connection/top)


Multi-Loaded Multi-Span Beam

[2015 International Building Code(2015 NDS)]

(2) 1.5 IN x 3.5 IN x 8.0 FT #2 - Hem-Fir - Dry Use Section Adequate By: 101.6% Controlling Factor: Deflection

MATERIAL PROPERTIES

Shear Stress:

of

StruCalc Version 10.0.1.6

12/4/2017 4:38:42 PM

DEFLECTIONS	<u>Center</u>	
Live Load	0.26 IN L/363	
Dead Load	0.01 in	
Total Load	0.28 IN L/346	
Live Load Deflect	ion Criteria: L/180	Total Load Deflection Criteria: L/120

REA	<u>CTIONS</u>	<u>A</u>		<u>B</u>	
Live	Load	100	lb	100	lb
Dead	d Load	8	lb	8	lb
Tota	l Load	108	lb	108	lb
Bear	ing Length	0.09	in	0.09	in

BEAM DATA	Ce	nter
Span Length	8	ft
Unbraced Length-Top	0	ft
Unbraced Length-Bottom	8	ft
Live Load Duration Factor	1.	.60
Notch Depth	0.	.00

LOADING DIAGRAM 1 8 ft B

UNIFORM LOADS	<u>Center</u>	
Uniform Live Load	0 plf	
Uniform Dead Load	0 plf	
Beam Self Weight	2 plf	
Total Uniform Load	2 plf	

#Z - nem-rm					
	<u>Base</u>	Values	<u>Adjusted</u>		
Bending Stress:	Fb =	850 psi	Fb' =	2040 psi	

Cd=1.60 CF=1.50

Fv = 150 psi Fv' = 240 psi

Cd=1.60

Modulus of Elasticity: E = 1300 ksi E' = 1300 ksi Comp. $^{\perp}$ to Grain: Fc - $^{\perp}$ = 405 psi Fc - $^{\perp}$ = 405 psi

Controlling Moment: 416 ft-lb

4.0 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear: 108 lb

At left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:	Reg'd	Provided
Section Modulus:	2.45 in3	6.13 in3
Area (Shear):	0.67 in2	10.5 in2
Moment of Inertia (deflection):	5.32 in4	10.72 in4
Moment:	416 ft-lb	1041 ft-lb
Shear:	108 lb	1680 lb

POINT LOADS	<u> 3 - CENT</u>	<u>ER SPAN</u>
Load Number	<u>One</u>	
Live Load	200 lb	
Dead Load	0 lb	
Location	4 ft	

Balloon Framed stud calculations

	_	<u>'</u>				
DATE	3/3/2021		COMPANY:	L120	Engineering & Desig	n, LLC
VITRUVIUS BUILD:	StruCalc		DESIGNED BY:	Mar	s Thurfjell	
CUSTOMER:			REVIEWED BY:	Mar	s Thurfjell	
PROJECT LOCATION:					•	
LEVEL	Roof		LOADING:	ASD)	
LOCATION:	2x6 Ballo	on Frame (12" o.c.) (w	rind load f@db& r a	ap2p011€	BdratednattioomalaBuliLi)lin	ng Code
TYPE	COLUMN		NDS:	2018	NDS	
MATERIAL:	SOLID SA	WN				
Hem-Fir I	lo. 2	(1) 1.5 X 5.5	DRY			

COLUM	N PROPERTIES							
Start (ft): 0	End (ft): 17.25 Me	ember Slope: 0/12 Act	ual Length (ft): 17.25					
Are	ea	lx	ly	BSW	Lams		G	Kcr
(in	²)	(in⁴)	(in⁴)	(lbf/ft)				Creep Factor
8.2	5	20.8	1.55	1.63	1		0.43	1
STRENG	TH PROPERTIE	S						
	Fb (psi)	Ft (psi)	Fv (psi)	Fc (psi)	Fc	⊥(psi)	E (psi) x10 ³	Emin (psi) x10 ³
Base Valu	ies 850	525	150	1300		405	1300	470
djusted Valu	es 1105	682	150	1430		405	1300	470
	C _M 1	1	1	1		1	1	1
	C _T 1	1	1	1		1	1	1
	C _i 1	1	1	1		1	1	1
	C _F 1.3	1.3	1	1.1		1	1	1
Bending Adj	ustment Factors	$C_{fu} = 1$ $C_r = 1$						
COLUM	N DATA							
		Unbraced Length (f	t) Column End					
Span	Length (ft)	Χ	' Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (Y Axis)
1	17.25	17.25	0	0.18	1.00	1.00	37.64	8
PASS-FA	AIL							
		PASS/FAIL	MAGNITUDE	STRENGTH	LOCATI	ON (ft)	LOAD COMBO	DURATION FACTOR C
S	Shear Stress Y (psi)	PASS (89.5%)	15.7	150.0	17.	25	D+L	1
Ben	ding Stress Y (psi)	PASS (46.3%)	590.2	1099.4	8.6	52	D+L	1
	Deflection (in)	PASS (35.9%)	0.737 (=L/281)	1.150 (=L/180)	8.6	52	L	
Comp	ressive Stress (psi)	PASS (61.6%)	100.4	261.1	C)	D+L	1
В	Bearing Stress (psi)	PASS (98.9%)	16.4	1430.0	C		D+L	1

KEA	<u>CTIONS</u>	Units for V	: lbf Units for N	VI: IDT-TT							
Z axis	DEAD	LIVE	LIVE ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
Α	328	500	0	0	0	0	0	0	0	0	0
В	0	0	0	0	0	0	0	0	0	0	0
/ axis											
Α	0	86	0	0	0	0	0	0	0	0	0
В	0	86	0	0	0	0	0	0	0	0	0

A B

LOAD LIST						
Туре	Left Magnitude	Right Magnitude	Load Start (ft)	Load End (ft)	Load Type	Direction
Uniform (lbf/ft)	10	10	0	17.25	Live	Υ
Point (lbf)	-500	-	17.25	-	Live	Z
Point (lbf)	-300	-	17.25	-	Dead	Z
Self Weight (lbf/ft)	1.63	1.63	0	17.25	Dead	Z
3 1(1, 1,						

DATE: 3/3/2021 COMPANY: L120 Engineering & Design, LLC **VITRUVIUS BUILD:** StruCalc **DESIGNED BY:** Mans Thurfjell **CUSTOMER:** Mans Thurfjell **REVIEWED BY:** PROJECT LOCATION: LEVEL: Roof LOADING: **ASD** 1.75x5.5 LSL Balloon Frame (@12") (windOooEd fa2038 appeliedtaordas Book diag LL) de LOCATION: TYPE: COLUMN NDS: 2018 NDS STRUCTURAL COMPOSITE LUMBER MATERIAL: Weyerhaeuser 1.55E TimberStrand LSL (1) 1.75 X 5.5 DRY

COL	UMN PRO	DEDTIEC									
			mber Slope: 0/12 A	atural Lamenth	. (f+), 17 2E						
Start (It	Area	. 17.25 IVIE	lx	ly	1 (11): 17.25	BSW	Lan	25	Cfn		Kcr
	(in²)		(in ⁴)	(in ⁴)		(lbf/ft)	Laii	lis .	CIII	Cr	eep Factor
	9.62		24.26	2.46		3.01	1		10.87	Cit	1
-		~~~									•
STRI	NGTH P										
		Fb (psi)	Ft (psi)		Fv (psi)	Fc (psi)		Fc⊥(psi)	E (psi) x10 ³	En	nin (psi) x10³
	Values	2325	1290		310	2170		900	1550		787.815
djusted		2325	1290		310	2170		900	1550		788
	c _M	1	1		1	1		1	1		1
	C _T	1	1		1	1		1	1		1
Bending	ı Adjustment	Factors	$C_V = 1.07 C_r = 1$	Volum	ie factor is appi	ied on a load coi	mbination bas	sis And Is Not re	flected in the adju	isted value	es
COL	UMN DA	ΓΑ									
			Unbraced Length	(ft)	Column End						
Span	Leng	gth (ft)	Х	Υ	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (Y Axis)
1	17	7.25	17.25	1	0	0.21	1.00	1.00	37.64	6.8	36
	• •	1.25	17.23	•	U	0.21		1.00	37.04	0.0	
DAC		,	17.23	•	-	0.21		1.00	37.04	0.0	
PAS	S-FAIL	,									10.11.F.4.GTOD G
PAS	S-FAIL		PASS/FAIL	MAG	SNITUDE	STRENGTH	LOCA	ATION (ft)	LOAD COMBO		
PAS	S-FAIL Shear Sti	ress Y (psi)	PASS/FAIL PASS (95.7%)	MAG	GNITUDE 13.4	STRENGTH 310.0	LOCA	ATION (ft) 17.25	LOAD COMBO D+L		1
PAS	S-FAIL Shear Str Bending Str	ress Y (psi) ress Y (psi)	PASS/FAIL PASS (95.7%) PASS (79.7%)	MAG	SNITUDE 13.4 505.9	STRENGTH 310.0 2486.4	LOCA	ATION (ft) 17.25 8.62	LOAD COMBO D+L D+L		
	S-FAIL Shear Str Bending Str Def	ress Y (psi) ress Y (psi) lection (in)	PASS/FAIL PASS (95.7%) PASS (79.7%) PASS (53.9%)	MAG 5 0.530	SNITUDE 13.4 505.9 (=L/391)	STRENGTH 310.0 2486.4 1.150 (=L/180)	LOCA	ATION (ft) 17.25 8.62 8.62	LOAD COMBO D+L D+L L		1 1
	S-FAIL Shear Str Bending Str Defo	ress Y (psi) ress Y (psi) lection (in) Stress (psi)	PASS/FAIL PASS (95.7%) PASS (79.7%) PASS (53.9%) PASS (40.5%)	MAG 5 0.530	5NITUDE 13.4 505.9 (=L/391) 265.1	STRENGTH 310.0 2486.4 1.150 (=L/180) 445.7	LOCA	ATION (ft) 17.25 8.62 8.62 0	LOAD COMBO D+L D+L L D+L		1 1 1
C	S-FAIL Shear Str Bending Str Defompressive S Bearing S	ress Y (psi) ress Y (psi) lection (in) Stress (psi)	PASS/FAIL PASS (95.7%) PASS (79.7%) PASS (53.9%) PASS (40.5%) PASS (99.4%)	MAG 5 0.530	GNITUDE 13.4 505.9 (=L/391) 265.1 14.1	STRENGTH 310.0 2486.4 1.150 (=L/180) 445.7 2170.0	LOCA	ATION (ft) 17.25 8.62 8.62 0	LOAD COMBO D+L D+L L D+L D+L		1 1 1
c	S-FAIL Shear Str Bending Str Defo	ress Y (psi) ress Y (psi) lection (in) Stress (psi)	PASS/FAIL PASS (95.7%) PASS (79.7%) PASS (53.9%) PASS (40.5%)	MAG 5 0.530	5NITUDE 13.4 505.9 (=L/391) 265.1	STRENGTH 310.0 2486.4 1.150 (=L/180) 445.7	LOCA	ATION (ft) 17.25 8.62 8.62 0	LOAD COMBO D+L D+L L D+L		1 1 1
C	S-FAIL Shear Str Bending Str Def ompressive S Bearing S	ress Y (psi) ress Y (psi) lection (in) Stress (psi) Stress (psi) sion (Unit)	PASS/FAIL PASS (95.7%) PASS (79.7%) PASS (53.9%) PASS (40.5%) PASS (99.4%) PASS (17.5%)	MAG 5 0.530	GNITUDE 13.4 505.9 (=L/391) 265.1 14.1	STRENGTH 310.0 2486.4 1.150 (=L/180) 445.7 2170.0	LOCA	ATION (ft) 17.25 8.62 8.62 0	LOAD COMBO D+L D+L L D+L D+L		1 1 1
C Bendii REA	S-FAIL Shear Str Bending Str Defi ompressive S Bearing S ng-Compress	ress Y (psi) ress Y (psi) lection (in) Stress (psi) Stress (psi) Sion (Unit)	PASS/FAIL PASS (95.7%) PASS (79.7%) PASS (53.9%) PASS (40.5%) PASS (99.4%) PASS (17.5%)	0.530 2	GNITUDE 13.4 505.9 (=L/391) 265.1 14.1 0.82	STRENGTH 310.0 2486.4 1.150 (=L/180) 445.7 2170.0 1.00	LOCA	ATION (ft) 17.25 8.62 8.62 0 0 8.45	LOAD COMBO D+L D+L L D+L D+L D+L	DURAT	1 1 1 1 1
C Bendii REA Z axis	S-FAIL Shear Str Bending Str Defrompressive S Bearing S ng-Compress CTIONS DEAD	ress Y (psi) ress Y (psi) lection (in) Stress (psi) Stress (psi) Siron (Unit) Units for	PASS/FAIL PASS (95.7%) PASS (79.7%) PASS (53.9%) PASS (40.5%) PASS (99.4%) PASS (17.5%) V: lbf Units for M: LIVE ROOF	MAG 0.530 2 Ibf-ft SNOW	SNITUDE 13.4 505.9 (=L/391) 265.1 14.1 0.82	STRENGTH 310.0 2486.4 1.150 (=L/180) 445.7 2170.0 1.00	LOCA	ATION (ft) 17.25 8.62 8.62 0 0 8.45	LOAD COMBO D+L D+L L D+L D+L D+L D+L	DURAT	1 1 1 1 1
C Bendii REA Z axis A	S-FAIL Shear Str Bending Str Defrompressive S Bearing S ng-Compress CTIONS DEAD 1052	ress Y (psi) ress Y (psi) lection (in) Stress (psi) Stress (psi) sion (Unit) Units for 1 LIVE 1500	PASS/FAIL PASS (95.7%) PASS (79.7%) PASS (53.9%) PASS (40.5%) PASS (99.4%) PASS (17.5%) V: lbf Units for M: LIVE ROOF 0	MAG 0.530 2 Ibf-ft SNOW 0	SNITUDE 13.4 505.9 (=L/391) 265.1 14.1 0.82 WIND +	STRENGTH 310.0 2486.4 1.150 (=L/180) 445.7 2170.0 1.00 WIND -	SEISMIC +	ATION (ft) 17.25 8.62 8.62 0 0 8.45 SEISMIC -	LOAD COMBO D+L D+L L D+L D+L D+L D+L O+L	DURATION O	1 1 1 1 1 1 EARTH 0
C Bendii REA Z axis A B	S-FAIL Shear Str Bending Str Defrompressive S Bearing S ng-Compress CTIONS DEAD	ress Y (psi) ress Y (psi) lection (in) Stress (psi) Stress (psi) Siron (Unit) Units for	PASS/FAIL PASS (95.7%) PASS (79.7%) PASS (53.9%) PASS (40.5%) PASS (99.4%) PASS (17.5%) V: lbf Units for M: LIVE ROOF	MAG 0.530 2 Ibf-ft SNOW	SNITUDE 13.4 505.9 (=L/391) 265.1 14.1 0.82	STRENGTH 310.0 2486.4 1.150 (=L/180) 445.7 2170.0 1.00	LOCA	ATION (ft) 17.25 8.62 8.62 0 0 8.45	LOAD COMBO D+L D+L L D+L D+L D+L D+L	DURAT	1 1 1 1
C Bendii REA Z axis A	S-FAIL Shear Str Bending Str Defrompressive S Bearing S ng-Compress CTIONS DEAD 1052	ress Y (psi) ress Y (psi) lection (in) Stress (psi) Stress (psi) sion (Unit) Units for 1 LIVE 1500	PASS/FAIL PASS (95.7%) PASS (79.7%) PASS (53.9%) PASS (40.5%) PASS (99.4%) PASS (17.5%) V: lbf Units for M: LIVE ROOF 0	MAG 0.530 2 Ibf-ft SNOW 0	SNITUDE 13.4 505.9 (=L/391) 265.1 14.1 0.82 WIND +	STRENGTH 310.0 2486.4 1.150 (=L/180) 445.7 2170.0 1.00 WIND -	SEISMIC +	ATION (ft) 17.25 8.62 8.62 0 0 8.45 SEISMIC -	LOAD COMBO D+L D+L L D+L D+L D+L D+L O+L	DURATION O	1 1 1 1 1 1 EARTH 0

LOAD LIST						
Туре	Left Magnitude	Right Magnitude	Load Start (ft)	Load End (ft)	Load Type	Direction
Point (lbf)	-1500	-	17.25	-	Live	Z
Point (lbf)	-1000	-	17.25	-	Dead	Z
Uniform (lbf/ft)	10	10	0	17.25	Live	Υ
Self Weight (lbf/ft)	3.01	3.01	0	17.25	Dead	Z
5 1 1						

	DATE:	3/3/2021		COMPANY:	L120	Engineering & Desig	n, LLC
VITRUVIUS	S BUILD:	StruCalc		DESIGNED BY:		s Thurfjell	•
CUS	STOMER:			REVIEWED BY:	Man	s Thurfjell	
PROJECT LOG	CATION:					-	
		,					
	LEVEL:	Roof		LOADING:	ASD		
LO	CATION:	2x6 Ballo	on Frame (8" o.c.) (W	ind load &@t& : a	p 2018	bll atedrshtoom ab Bull)dir	ig Code
	TYPE:	COLUMN		NDS:	2018	NDS	
MA	ATERIAL:	SOLID SA	WN				
Hem-Fir	No	. 2	(1) 1.5 X 5.5	DRY			

-											
COL	UMN PROPE	RTIES									
Start (ft): 0 End (ft): 17.	25 Me	mber Slop	e: 0/12 Actua	l Length (ft): 17.25						
	Area		lx		ly	BSW	Lams		G	Kcr	
	(in²)		(in ⁴)		(in ⁴)	(lbf/ft)				Creep Fact	tor
	8.25		20.8		1.55	1.63	1		0.43	1	
STRI	NGTH PRO	PERTIE	S								
	F	b (psi)		Ft (psi)	Fv (psi)	Fc (psi)	F	c⊥(psi)	E (psi) x10 ³	Emin (psi)	x10 ³
Base	Values	850		525	150	1300		405	1300	470	
Adjusted	Values	1105		682	150	1430		405	1300	470	
	c _M	1		1	1	1		1	1	1	
	c _T	1		1	1	1		1	1	1	
	c _i	1		1	1	1		1	1	1	
	C _F	1.3		1.3	1	1.1		1	1	1	
Bending	Adjustment Fac	tors	C _{fu} = 1	C _r = 1							
COL	UMN DATA										
			Unbrad	ed Length (ft)	Column End						
Span	Length ((ft)	Х	Υ	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (Y Axis)	
1	17.25		17.25	1	0	0.18	1.00	1.00	37.64	8	
PAS	S-FAIL										
			PASS	S/FAIL	MAGNITUDE	STRENGTH	LOCAT	ION (ft)	LOAD COMBO	DURATION FAC	CTOR CD
	Shear Stress	Y (psi)	PASS	(92.7%)	11.0	150.0	17	.25	D+L	1	
	Bending Stress	Y (psi)	PASS	(62.4%)	413.1	1099.4	8	.62	D+L	1	
	Deflecti	on (in)	PASS	(55.1%)	0.516 (=L/401)	1.150 (=L/180)	8	.62	L		
C	ompressive Stre	ss (psi)	PASS	(49.9%)	130.7	261.1		0	D+L	1	
	Bearing Stre	ss (psi)	PASS	(99.2%)	11.5	1430.0		0	D+L	1	
Bendi	ng-Compression	(Unit)	PASS	(4.3%)	0.96	1.00	8	.45	D+L	1	

Z axis	DEAD	LIVE	LIVE ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
Α	528	550	0	0	0	0	0	0	0	0	0
В	0	0	0	0	0	0	0	0	0	0	0
/ axis											
Α	0	60	0	0	0	0	0	0	0	0	0
В	0	60	0	0	0	0	0	0	0	0	0

A E

LOAD LIST						
Туре	Left Magnitude	Right Magnitude	Load Start (ft)	Load End (ft)	Load Type	Direction
Point (lbf)	-550	-	17.25	-	Live	Z
Point (lbf)	-500	-	17.25	-	Dead	Z
Uniform (lbf/ft)	7	7	0	17.25	Live	Υ
Self Weight (lbf/ft)	1.63	1.63	0	17.25	Dead	Z

DATE: 3/3/2021 COMPANY: L120 Engineering & Design, LLC **VITRUVIUS BUILD:** StruCalc Mans Thurfjell **DESIGNED BY:** Mans Thurfjell **CUSTOMER: REVIEWED BY:** PROJECT LOCATION: LEVEL: Roof LOADING: **ASD** LOCATION: 175x5.5 LSL Balloon Frame (@ 8") (Win**d Otale**t fa**20**018dppetieral taodash വെർവും de TYPE: **COLUMN** NDS: 2018 NDS STRUCTURAL COMPOSITE LUMBER MATERIAL: (1) 1.75 X 5.5 Weyerhaeuser 1.55E TimberStrand LSL DRY

		UDEDITIES									
	UMN PRO		mber Slope: 0/12 A	ctual Lanati	h (ft): 17 25						
Start (it	Area	. 17.23 WE	lx	ly	11 (11). 17.23	BSW	Lar	ns	Cfn		Kcr
	(in²)		(in ⁴)	(in⁴)		(lbf/ft)				Cr	eep Factor
	9.62		24.26	2.46		3.01	1		10.87		1
STR	ENGTH P	ROPERTIE	S								
		Fb (psi)	Ft (psi)		Fv (psi)	Fc (psi)		Fc⊥(psi)	E (psi) x10 ³	Er	nin (psi) x10³
Base	Values	2325	1290		310	2170		900	1550		787.815
ljusted	Values	2325	1290		310	2170		900	1550		788
	c _M	1	1		1	1		1	1		1
	C _T	1	1		1	1		1	1		1
ending	g Adjustmen	t Factors	$C_V = 1.07 C_r = 1$	Volum	ne factor Is app	lied on a load cor	mbination ba	sis And Is Not re	flected in the adj	usted valu	es
COL	UMN DA	TA									
			Unbraced Length	(ft)	Column End						
pan	Len	gth (ft)	Χ	Υ	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)) KeL/d (Y Axis)
1	1	7.25	17.25	1	0	0.21	1.00	1.00	37.64	6.8	86
PAS	S-FAIL	/									
	J 1741E		PASS/FAIL	MAG	SNITUDE	STRENGTH	LOCA	ATION (ft)	LOAD COMBO	DURAT	ION FACTOR
		ress Y (psi)	PASS/FAIL PASS (97.0%)	MAG	SNITUDE 9.4	STRENGTH 310.0		ATION (ft) 17.25	LOAD COMBO D+L	DURAT	ION FACTOR
			•		-			, ,		DURAT	
	Shear St Bending St		PASS (97.0%)	:	9.4 354.1	310.0 2486.4		17.25	D+L	DURAT	1
	Shear St Bending St	ress Y (psi) lection (in)	PASS (97.0%) PASS (85.8%)	0.371	9.4	310.0		17.25 8.62	D+L D+L	DURAT	1
	Shear St Bending St Dei Compressive	ress Y (psi) lection (in)	PASS (97.0%) PASS (85.8%) PASS (67.7%)	0.371	9.4 354.1 (=L/558)	310.0 2486.4 1.150 (=L/180)		17.25 8.62 8.62	D+L D+L L	DURAT	1
C	Shear St Bending St Dei Compressive	ress Y (psi) flection (in) Stress (psi) Stress (psi)	PASS (97.0%) PASS (85.8%) PASS (67.7%) PASS (28.9%)	0.371	9.4 354.1 (=L/558) 317.1	310.0 2486.4 1.150 (=L/180) 445.7		17.25 8.62 8.62 0	D+L D+L L D+L	DURAT	1
C Bendi	Shear St Bending St Def Ompressive Bearing ng-Compres	ress Y (psi) flection (in) Stress (psi) Stress (psi) sion (Unit)	PASS (97.0%) PASS (85.8%) PASS (67.7%) PASS (28.9%) PASS (99.5%) PASS (4.6%)	0.371	9.4 354.1 (=L/558) 317.1 9.9	310.0 2486.4 1.150 (=L/180) 445.7 2170.0		17.25 8.62 8.62 0	D+L D+L L D+L D+L	DURAT	1 1 1
C Bendii REA	Shear St Bending St Def Compressive Bearing ng-Compres	ress Y (psi) flection (in) Stress (psi) Stress (psi) ston (Unit) Units for	PASS (97.0%) PASS (85.8%) PASS (67.7%) PASS (28.9%) PASS (99.5%) PASS (4.6%) V: lbf Units for M:	0.371 0.471 Ibf-ft	9.4 354.1 (=L/558) 317.1 9.9 0.95	310.0 2486.4 1.150 (=L/180) 445.7 2170.0 1.00		17.25 8.62 8.62 0 0 8.45	D+L D+L L D+L D+L D+L		1 1 1 1
C Bendi REA axis	Shear St Bending St Det Compressive Bearing ng-Compres CTIONS DEAD	ress Y (psi) Flection (in) Stress (psi) Stress (psi) sion (Unit) Units for	PASS (97.0%) PASS (85.8%) PASS (67.7%) PASS (28.9%) PASS (99.5%) PASS (4.6%) V: lbf Units for M: LIVE ROOF	0.371 Ibf-ft SNOW	9.4 354.1 (=L/558) 317.1 9.9 0.95	310.0 2486.4 1.150 (=L/180) 445.7 2170.0 1.00	SEISMIC +	17.25 8.62 8.62 0 0 8.45	D+L L D+L D+L D+L D+L	RAIN	1 1 1 1 1 EARTH
REA axis	Shear St Bending St Def compressive Bearing ng-Compres CTIONS DEAD 1052	ress Y (psi) Flection (in) Stress (psi) Stress (psi) sion (Unit) Units for LIVE 2000	PASS (97.0%) PASS (85.8%) PASS (67.7%) PASS (28.9%) PASS (99.5%) PASS (4.6%) V: lbf Units for M: LIVE ROOF 0	0.371 Ibf-ft SNOW 0	9.4 354.1 (=L/558) 317.1 9.9 0.95 WIND +	310.0 2486.4 1.150 (=L/180) 445.7 2170.0 1.00 WIND -	SEISMIC +	17.25 8.62 8.62 0 0 8.45 SEISMIC -	D+L	RAIN 0	1 1 1 1 1 EARTH 0
REA axis A B	Shear St Bending St Det Compressive Bearing ng-Compres CTIONS DEAD	ress Y (psi) Flection (in) Stress (psi) Stress (psi) sion (Unit) Units for	PASS (97.0%) PASS (85.8%) PASS (67.7%) PASS (28.9%) PASS (99.5%) PASS (4.6%) V: lbf Units for M: LIVE ROOF	0.371 Ibf-ft SNOW	9.4 354.1 (=L/558) 317.1 9.9 0.95	310.0 2486.4 1.150 (=L/180) 445.7 2170.0 1.00	SEISMIC +	17.25 8.62 8.62 0 0 8.45	D+L L D+L D+L D+L D+L	RAIN	1 1 1 1 1 EARTH
REA axis	Shear St Bending St Def compressive Bearing ng-Compres CTIONS DEAD 1052	ress Y (psi) Flection (in) Stress (psi) Stress (psi) sion (Unit) Units for LIVE 2000	PASS (97.0%) PASS (85.8%) PASS (67.7%) PASS (28.9%) PASS (99.5%) PASS (4.6%) V: lbf Units for M: LIVE ROOF 0	0.371 Ibf-ft SNOW 0	9.4 354.1 (=L/558) 317.1 9.9 0.95 WIND +	310.0 2486.4 1.150 (=L/180) 445.7 2170.0 1.00 WIND -	SEISMIC +	17.25 8.62 8.62 0 0 8.45 SEISMIC -	D+L	RAIN 0	1 1 1 1 1 EARTH 0

LOAD LIST						
Туре	Left Magnitude	Right Magnitude	Load Start (ft)	Load End (ft)	Load Type	Direction
Point (lbf)	-1000	-	17.25	-	Dead	Z
Point (lbf)	-2000	-	17.25	-	Live	Z
Uniform (lbf/ft)	7	7	0	17.25	Live	Υ
Self Weight (lbf/ft)	3.01	3.01	0	17.25	Dead	Z

Ledger Calculations

PROJECT NO.	SHEET NO.

PROJECT				
SUBJECT				
BY	DATE	/	/	

Table 12.3.3A Assigned Specific Gravities

Species Combin		ecific ¹ avity, G	Species Combinations of MSR and MEL Lumber	Specific ¹ Gravity, C
Alaska Cedar		0.47	Douglas Fir-Larch	
Alaska Hemlock		0.46	E=1,900,000 psi and lower grades of MSR	0.50
Alaska Spruce		0.41	E=2,000,000 psi grades of MSR	0.51
Alaska Yellow Cedar		0.46	E=2,100,000 psi grades of MSR	0.52
Aspen	BEAMS (DF #2, and Engineered Lumbe	0.39	E=2,200,000 psi grades of MSR	0.53
Balsam Fir	zzrane (zr. "z., ana zngmeerea zame	0.36	E=2,300,000 psi grades of MSR	0.54
Beech-Birch-Hickory	34	0.71	E=2,400,000 psi grades of MSR	0.55
Coast Sitka Spruce		0.39	Douglas Fir-Larch (North)	
Cottonwood		0.41	E=1,900,000 psi and lower grades of MSR and MEL	0.49
Douglas Fir-Larch		0.50	E=2,000,000 psi to 2,200,000 psi grades of MSR and MEL	0.53
Douglas Fir-Larch (No	orth)	0.49	E=2,300,000 psi and higher grades of MSR and MEL	0.57
Douglas Fir-South		0.46	Douglas Fir-Larch (South)	
Eastern Hemlock		0.41	E=1,000,000 psi and higher grades of MSR	0.46
Eastern Hemlock-Bals	sam Fir	0.36	Engelmann Spruce-Lodgepole Pine	
Eastern Hemlock-Tan	narack	0.41	E=1,400,000 psi and lower grades of MSR	0.38
Eastern Hemlock-Tan	narack (North)	0.47	E=1,500,000 psi and higher grades of MSR	0.46
Eastern Softwoods	Joists and 2x members (HF #2)	0.36	Hem-Fir	
Eastern Spruce	Journal of the state of the sta	0.41	E=1,500,000 psi and lower grades of MSR	0.43
Eastern White Pine		0.36	E=1,600,000 psi grades of MSR	0.44
Engelmann Spruce-Lodgepole Pine		0.38	E=1,700,000 psi grades of MSR	0.45
Hem-Fir		0.43	E=1,800,000 psi grades of MSR	0.46
Hem-Fir (North)		0.46	E=1,900,000 psi grades of MSR	0.47
Mixed Maple		0.55	E=2,000,000 psi grades of MSR	0.48
Mixed Oak		0.68	E=2,100,000 psi grades of MSR	0.49
Mixed Southern Pine		0.51	E=2,200,000 psi grades of MSR	0.50
Mountain Hemlock		0.47	E=2,300,000 psi grades of MSR	0.51
Northern Pine		0.42	E=2,400,000 psi grades of MSR	0.52
Northern Red Oak		0.68	Hem-Fir (North)	
Northern Species		0.35	E=1,000,000 psi and higher grades of MSR and MEL	0.46
Northern White Cedar	ki.	0.31	Southern Pine	-0.000
Ponderosa Pine		0.43	E=1,700,000 psi and lower grades of MSR and MEL	0.55
Red Maple		0.58	E=1,800,000 psi and higher grades of MSR and MEL	0.57
Red Oak		0.67	Spruce-Pine-Fir	
Red Pine		0.44	E=1,700,000 psi and lower grades of MSR and MEL	0.42
Redwood, close grain		0.44	E=1,800,000 psi and 1,900,000 grades of MSR and MEL	0.46
Redwood, open grain		0.37	E=2,000,000 psi and 1,500,000 grades of MSR and MEL	0.50
Sitka Spruce		0.43	Spruce-Pine-Fir (South)	
Southern Pine		0.55	E=1,100,000 psi and lower grades of MSR	0.36
Southern Pine Spruce-Pine-Fir		0.33	E=1,200,000 psi and lower grades of MSR E=1,200,000 psi to1,900,000 psi grades of MSR	0.42
Spruce-Pine-Fir (Sout	h)	0.36	E=2,000,000 psi to1,900,000 psi grades of MSR	0.42
Western Cedars		0.36	Western Cedars	0.50
Western Cedars (North	63	0.35	E=1,000,000 psi and higher grades of MSR	0.36
Western Hemlock		0.33	Western Woods	0.30
Western Hemlock (No	week V	0.47	E=1,000,000 psi and higher grades of MSR	0.36
Western White Pine	nutj	0.40	L-1,000,000 psi and nigher grades of Mark	0.30
Western Woods		0.40		
White Oak		0.36		
Yellow Poplar		0.73		

Specific gravity, G, based on weight and volume when oven-dry. Different specific gravities, G, are possible for different grades of MSR and MEL lumber (see Table 4C, Footnote 2).

LONGITUDE
ONE TWENTY°
ENGINEERING & DESIGN

PROJECT NO

SUBJECT				
BY	DATE	/	/	

Table 12K LAG SCREWS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections 1,2,3,4

PROJECT _____

SHEET NO

for sawn lumber or SCL with ASTM A653, Grade 33 steel side plate (for t_s<1/4") or ASTM A 36 steel side plate (for t_s=1/4")

(tabulated lateral design values are calculated based on an assumed length of lag screw penetration, p, into the main member equal to 8D)

Side Member Thickness	Lag Screw Diameter	G=0.67	Red Oak	G=0.55 Mixed Manla	Southern Pine	G=0.5	Douglas Fir-Larch	G=0.49 Douglas Fir4.arch	(N)	G=0.46 Danolae Fir(S)	Hem-Fir(N)	G=0.43	Hem-Fir	G=0.42	Spruce-Pine-Fir	G=0.37	(open grain)	G=0.36 Eastern Softwoods	Western Cedars Western Woods	G=0.35	Northern Species
ts	D	Z _{II}	Z,	Z _{II}	Z ₁	Z _{II}	Z ₁	ZII	Z ₁	Z	ZL	Zıı	Z,	Z _{II}	Z,	Z _{II}	Z,	Z _{ii}	Z ₁	Z _{II}	Z ₁
in. 0.075	in. 1/4	lbs. 170	lbs.	lbs. 160	lbs.	lbs.	lbs.	lbs. 150	lbs.	lbs.	lbs.	lbs.	lbs. 100	lbs. 140	lbs. 100	lbs.	lbs. 90	lbs. 130	lbs. 90	lbs. 130	lbs. 90
			130		120	150	110		110	150	100	140				130					
	5/16	220	160	200	140	190	130	190	130	190	130	180	120	180	120	170	110	170	110	160	100
	3/8	220	160	200	140	200	130	190	130	190	120	180	120	180	120	170	110	170	100	170	100
	1/4	180	140	170	130	160	120	160	120	160	110	150	110	150	110	140	100	140	100	140	90 110
	5/16 3/8	230	170	210 210	150 140	200	140	200	140 130	190	130	190 190	120	190	120 120	180	110	170	110	170	
	1/4	190	160 150	180	130	170	140	200 170	120	200 160	130	160	110	190	110	180 150	110	180 150	110	170 140	110
							140	200	140	200	140	190	\ \		130		120	180			
	5/16 3/8	230 240	170 170	210 220	150 150	210 210	140	210	140	200	130	200	130	190 190	120	180 180	110	180	120 110	180 180	110 110
	1/4	200	150	180	140	180	130	170	130	170	120	160	120	160	110	150	110	150	100	150	100
	5/16	240	180	220	160	210	150	210	140	200	140	200	130	200	130	190	120	180	120	180	120
	3/8	240	170	220	150	220	140	210	140	210	140	200	130	200	130	190	120	190	120	180	110
	1/4	220	170	210	150	200	150	200	140	190	140	190	130	190	130	180	120	170	120	170	120
	5/16	260	190	240	170	230	160	230	160	230	150	220	150	220	150	210	130	200	130	200	130
	3/8	270	190	250	170	240	160	240	160	230	150	220	140	220	140	210	130	210	130	200	130
	1/4	240	180	220	160	210	150	210	150	200	140	190	140	190	130	180	120	180	120	180	120
	5/16	300	220	280	190	270	180	260	180	260	170	250	160	250	160	230	150	230	150	230	140
	3/8	310	220	280	190	270	180	270	180	260	170	250	160	250	160	240	140	230	140	230	140
	7/16	420	290	390	260	380	240	370	240	360	230	350	220	350	220	330	200	330	200	320	190
	1/2	510	340	470	300	460	290	450	280	440	270	430	260	420	260	400	240	400	230	390	230
	5/8	770	490	710	430	680	400	680	400	660	380	640	370	630	360	600	330	590	330	580	320
	3/4	1110	670	1020	590	980	560	970	550	950	530	920	500	910	500	860	450	850	450	840	440
	7/8	1510	880	1390	780	1330	730	1320	710	1280	690	1250	650	1230	650	1170	590	1160	590	1140	570
	1	1940	1100	1780	960	1710	910	1700	890	1650	860	1600	820	1590	810	1500	740	1480	730	1460	710
1/4	1/4	240	180	220	160	210	150	210	150	200	140	200	140	190	130	180	120	180	120	180	120
	5/16	310	220	280	200	270	180	270	180	260	170	250	170	250	160	230	150	230	150	230	140
	3/8	320	220	290	190	280	180	270	180	270	170	260	160	250	160	240	150	240	140	230	140
	7/16	480	320	440	280	420	270	420	260	410	250	390	240	390	230	370	220	360	210	360	210
	1/2	580	390	540	340	520	320	510	320	500	310	480	290	480	290	460	270	450	260	440	260
	5/8	850	530	780	470	750	440	740	440	720	420	700	400	690	400	660	370	650	360	640	350
	3/4	1200	730	1100	640	1060	600	1050	590	1020	570	990	540	980	530	930	490	920	480	900	470
	7/8	1600	930	1470	820	1410	770	1400	750	1360	720	1320	690	1310	680	1240	630	1220	620	1200	600
	1	2040	1150	1870	1000	1800	950	1780	930	1730	900	1680	850	1660	840	1570	770	1550	760	1530	740

1. Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1).

shall be calculated using the provisions of 12.3 for the reduced penetration.

4. The length of lag screw penetration, p, not including the length of the tapered tip, E (see Appendix Table L.2), of the lag screw into the main member shall not be less than 4D. See 12.1.4.6 for minimum length of penetration, p_{min}.

SDS connection of steel plate to wood, assuming HF, 100 lbs per 1/4" DIA SDS un-factored, without group action reduction, pending application/spacing.

Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment lateral design values, Z, are for "reduced body diameter" lag screws (see Appendix Table L2) inserted in side grain with screw axis perpendicular to wood fibers; screw penetration, p, into the main member equal to 8D; dowel bearing strengths, F_e, of 61,850 psi for ASTM A653, Grade 33 steel and 87,000 psi for ASTM A36 steel and screw bending yield strengths, F_e, of 70,000 psi for D = 1/4", 60,000 psi for D = 5/16", and 45,000 psi for D ≥3/8".
 Where the lag screw penetration, p, is less than 8D but not less than 4D, tabulated lateral design values, Z, shall be multiplied by p/8D or lateral design values.

LONGITUDE
ONE TWENTY ^o

ENGINEERING & DESIGN

PROJECT NO.	SHEET NO.

PROJECT				
SUBJECT				
BY	DATE	/	/	

Table 12L WOOD SCREWS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections^{1,2,3} for sawn lumber or SCL with both members of identical specific gravity (tabulated lateral design values are calculated based on an assumed length of wood screw penetration, p, into the main member equal to 10D) Fir-Larch(N Spruce-Pine-Fir(S) Western Cedars Eastern Softwoods Species FirLard G=0.46 Douglas Fir(S) Hem-Fir(N) Spruce-Pine-Fir Western Woods Southern Pine Side Member Wood Screw Mixed Maple open grain) Wood Scr Diameter G=0.49 Douglas F Redwood Northern G=0.67 Red Oak Selguoc G=0.43 Hem-Fir Vumber G=0.55 G=0.35 G=0.37 G=0.5 G=0. t_s D lbs lbs in lbs 74 0.138 R 0.151 0.164 0.177 0.190 156 93 91 79 78 0.216 0.242 5/8 0.151 0.164 136 91 88 81 74 72 62 61 58 0.177 0.190 0.216 0.242 3/4 0.138 DOWEL-TYPE FASTENERS 78 0.151 0.164 0.177 0.190 Exterior: Typical Ledger connection w/ SDS, un-factored since typical Deck loading application with duration = 1. Minimum (3) SDSW screws into RIM @ 12" o.c stud. Assuming worst case with 12' deck framing with connections into RIM @ 12" o.c w/ 60 psf LL and 10 psf DL - loading on each connection, staggered, (and ignoring capacity of typical nailing of rim). Connection is 6' x 72 psf x 1.00 = 432# versus capacity into DF/Engineered lumber (LSL) - 489#, ok. 0.177 0.190 0.216 0.242 1-1/4 0.138 0.151 0.164 0.177 0.190 0.216 0.242 1-1/2 0.138 0 151 0.164 0.177 0 190 0.216 0.242 0.138 1-3/4 0.151 0.164 0.177 0.190

Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1).

0.216

0.242

Tabulated lateral design values, Z, are for rolled thread wood screws (see Appendix Table L3) inserted in side grain with screw axis perpendicular to wood fibers; screw penetration, p, into the main member equal to 10D; and screw bending yield strengths, F_{yac} of 100,000 psi for 0.099" $\leq D \leq 0.142$ ", 90,000 psi for 0.142" $< D \leq 0.177$ ", 80,000 psi for 0.177" $< D \leq 0.236$ ", and 70,000 psi for 0.236" $< D \leq 0.273$ ".

3. Where the wood screw penetration, p, is less than 10D but not less than 6D, tabulated lateral design values, Z, shall be multiplied by p/10D or lateral design values shall be calculated using the provisions of 12.3 for the reduced penetration

LONGITUDE
ONE TWENTY ^o

ENGINEERING & DESIGN

PROJECT				
SUBJECT				
BY	DATE	/	/	

PROJECT NO.

SHEET NO.

Table 12.2A Lag Screw Reference Withdrawal Design Values, W1

Tabulated withdrawal design values (W) are in pounds per inch of thread penetration into side grain of wood member. Length of thread penetration in main member shall not include the length of the tapered tip (see 12.2.1.1).

Specific Gravity,		or ::0		2	Lag Sci	ew Diam	eter, D	100	105		
G^2	1/4"	5/16"	3/8"	7/16"	1/2"	5/8"	3/4"	7/8"	1"	1-1/8"	1-1/4
0.73	397	469	538	604	668	789	905	1016	1123	1226	1327
0.71	381	450	516	579	640	757	868	974	1077	1176	1273
0.68	357	422	484	543	600	709	813	913	1009	1103	1193
0.67	349	413	473	531	587	694	796	893	987	1078	1167
0.58	281	332	381	428	473	559	641	719	795	869	940
0.55	260	307	352	395	437	516	592	664	734	802	868
0.51	232	274	314	353	390	461	528	593	656	716	775
0.50	225	266	305	342	378	447	513	576	636	695	752
0.49	218	258	296	332	367	434	498	559	617	674	730
0.47	205	242	278	312	345	408	467	525	580	634	686
0.46	199	235	269	302	334	395	453	508	562	613	664
0.44	186	220	252	283	312	369	423	475	525	574	621
0.43	179	212	243	273	302	357	409	459	508	554	600
0.42	173	205	235	264	291	344	395	443	490	535	579
0.41	167	198	226	254	281	332	381	428	473	516	559
0.40	161	190	218	245	271	320	367	412	455	497	538
0.39	155	183	210	236	261	308	353	397	438	479	518
0.38	149	176	202	227	251	296	340	381	422	461	498
0.37	143	169	194	218	241	285	326	367	405	443	479
0.36	137	163	186	209	231	273	313	352	389	425	460
0.35	132	156	179	200	222	262	300	337	373	407	441
0.31	110	130	149	167	185	218	250	281	311	339	367

Tabulated withdrawal design values, W, for lag screw connections shall be multiplied by all applicable adjustment factors (see Table 11.3.1). Specific gravity, G, shall be determined in accordance with Table 12.3.3A.

12.2.3.2 For calculation of the fastener reference withdrawal design value in pounds, the unit reference withdrawal design value in lbs/in. of fastener penetration from 12.2.3.1 shall be multiplied by the length of fastener penetration, pt, into the wood member.

12.2.3.3 The reference withdrawal design value, in lbs/in. of penetration, for a single post-frame ring shank nail driven in the side grain of the main member, with the nail axis perpendicular to the wood fibers, shall be determined from Table 12.2D or Equation 12.2-4, within the range of specific gravities and nail diameters given in Table 12.2D. Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Table 11.3.1) to obtain adjusted withdrawal design values, W'.

W = 1800 G2 D (12.2-4)

12.2.3.4 For calculation of the fastener reference withdrawal design value in pounds, the unit reference withdrawal design value in lbs/in. of ring shank penetration from 12.2.3.3 shall be multiplied by the length of ring shank penetration, p, into the wood member.

12.2.3.5 Nails and spikes shall not be loaded in withdrawal from end grain of wood (Ceg=0.0).

12.2.3.6 Nails, and spikes shall not be loaded in withdrawal from end-grain of laminations in crosslaminated timber (Ceg=0.0).

12.2.4 Drift Bolts and Drift Pins

Reference withdrawal design values, W, for connections using drift bolt and drift pin connections shall be determined in accordance with 11.1.1.3.

Ledger withdrawal capacity - assuming minimum 1 1/2" embed (tip discounted) into SS/HF material = 179# x 1.5 x 3 = 805# per 16" of ledger connection (maximum utilized)

LONGITUDE
ONE TWENTY°
ENGINEERING & DESIGN

PROJECT NO.	SHEET NO.

PROJECT				
SUBJECT				
BY	DATE	/	/	

WOOD SCREWS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections^{1,2,3}

for sawn lumber or SCL with ASTM 653, Grade 33 steel side plate (tabulated lateral design values are calculated based on an assumed length of wood screw penetration, p, into the main member equal to 10D)

	4
l .	

Side Member Thickness	■ Wood Screw Diameter	Wood Screw Number	G=0.67 Red Oak	G=0.55 Mixed Maple Southern Pine	G=0.5 Douglas Fir-Larch	G=0.49 Douglas Fir-Larch(N)	G=0.46 Douglas Fir(S) Hem-Fir(N)	G=0.43 Hem-Fir	G=0.42 Spruce-Pine-Fir	G=0.37 Redwood (open grain)	G=0.36 Eastern Softwoods Spruce-Pine-Fir(S) Western Cedars Western Woods	G=0.35 Northern Species
in.	in.		lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.
0.036	0.138	6	89	76	70	69	66	62	60	54	53	52
(20 gage)	0.151	7	99	84	78	76	72	68	67	60	59	57
0.048	0.164	8	113 90	97 77	89 71	87 70	83 67	78 63	77 61	69 55	67 54	66 53
(18 gage)	0.151	7	100	85	79	77	74	69	68	61	60	58
	0.164	8	114	98	90	89	84	79	78	70	69	67
0.060	0.138	6	92	79	73	72	68	64	63	57	56	54
(16 gage)	0.151	7	101	87	81	79	75	71	70	63	61	60
	0.164	8	116	100 116	92 107	90 105	86 100	81 94	79 93	71 83	70 82	68 79
	0.177 0.190	10	136 146	125	116	114	108	102	100	90	88	86
0.075	0.138	6	95	82	76	75	71	67	66	59	58	57
(14 gage)	0.151	7	105	90	84	82	78	74	72	65	64	62
	0.164	8	119	103	95	93	89	84	82	74	73	71
	0.177	9	139	119	110	108	103	97	95	86	84	82
	0.190 0.216	10 12	150 186	128 159	119 147	117 145	111 138	105 130	103 127	92 114	91 112	88 109
	0.242	14	204	175	162	158	151	142	139	125	123	120
0.105	0.138	6	104	90	84	82	79	74	73	66	65	63
(12 gage)	0.151	7	114	99	92	90	86	81	80	72	71	69
	0.164	8	129	111	103	102	97	92	90	81	80	77
	0.177 0.190	9	148 160	128 138	119 128	116 125	111 120	105 113	103 111	93 100	91 98	89 96
	0.190	12	196	168	156	153	146	138	135	122	120	116
	0.242	14	213	183	170	167	159	150	147	132	130	126
0.120	0.138	6	110	95	89	87	83	79	77	70	68	67
(11 gage)	0.151	7	120	104	97	95	91	86	84	76	75	73
	0.164	8	135	117	109	107	102	96	94	85	84	82
	0.177 0.190	9	154 166	133 144	124 133	121 131	116 125	110 118	107 116	97 104	95 103	93 100
	0.190	12	202	174	162	159	152	143	140	126	124	121
	0.242	14	219	189	175	172	164	155	152	137	134	131
0.134	0.138	6	116	100	93	92	88	83	81	73	72	70
(10 gage)	0.151	7	126	110	102	100	96	91	89	80	79	77
	0.164 0.177	8	141 160	122 139	114 129	112 127	107 121	101 114	99 112	89 101	88 100	86 97
	0.190	10	173	149	139	136	130	123	121	109	107	104
	0.216	12	209	180	167	164	157	148	145	131	129	126
	0.242	14	226	195	181	177	169	160	157	141	139	135
0.179	0.138	6	126	107	99	97	92	86	84	76	74	72
(7 gage)	0.151	7	139 160	118	109	107	102 117	95	93 108	84 96	82 95	80 92
	0.164	9	184	136 160	126 148	123 145	138	110 129	127	113	111	108
	0.190	10	198	172	159	156	149	140	137	122	120	117
	0.216	12	234	203	189	186	178	168	165	149	146	143
	0.242	14	251	217	202	198	190	179	176	159	156	152
0.239	0.138	6	126	107	99	97	92	86	84	76	74	72
(3 gage)	0.151 0.164	7 8	139 160	118 136	109 126	107 123	102 117	95 110	93 108	84 96	82 95	80 92
	0.104	9	188	160	148	145	138	129	127	113	111	108
	0.190	10	204	173	159	156	149	140	137	122	120	117
	0.216	12	256	218	201	197	187	176	172	154	151	147
	0.242	14	283	241	222	217	207	194	190	170	167	162
 Tabulate 	d lateral	desig	n values, Z, s	hall be multip	lied by all app	licable adjust	ment factors (see Table 11.3	.1).			

Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.5.1).
 Tabulated lateral design values, Z, are for rolled thread wood screws (see Appendix L) inserted in side grain with screw axis perpendicular to wood fibers; screw penetration, p, into the main member equal to 10D; dowel bearing strength, F_e, of 61.850 psi for ASTM A653, Grade 33 steel and screw bending yield strengths, F_{ob}, of 100,000 psi for 0.099" ≤ D ≤ 0.142", 90,000 psi for 0.142" < D ≤ 0.177", 80,000 psi for 0.177"
 Where the wood screw penetration, p, is less than 10D but not less than 6D, tabulated lateral design values, Z, shall be multiplied by p/10D or lateral design values shall be calculated using the provisions of 12.3 for the reduced penetration.

LONGITUDE
ONE TWENTY°

ENGINEERING & DESIGN

PROJECT NO.	SHEET NO.

PROJECT			
SUBJECT			
DV	DATE	/ /	

Table	12P
(Cont.)

COMMON, BOX, or SINKER STEEL WIRE NAILS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections^{1,2,3}

for sawn lumber or SCL with ASTM 653, Grade 33 steel side plate (tabulated lateral design values are calculated based on an assumed length of nail penetration, p, into the main member equal to 10D)

		pe	netr	ation, p, i	nto the ma	ain memb	er equal t	o 10D)					
Side Member Thickness	Nail Diameter	Common Wire Nail Box Nail	Sinker Nail	G=0.67 Red Oak	G=0.55 Mixed Maple Southern Pine	G=0.5 Douglas Fir-Larch	G=0.49 Douglas Fir-Larch (N)	G=0.46 Douglas Fir (S) Hem-Fir(N)	G=0.43 Hem-Fir	G=0.42 Spruce-Pine-Fir	G=0.37 Redwood (open grain)	G=0.36 Eastern Softwoods Spruce-Pine-Fir(S) Western Cedars Western Woods	G=0.35 Northern Species
t,	D					· Carretor							
in.	in.	Pennyw		lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.
0.120	0.099	6d		90	78	72	71	68	64	63	57	56	53
(11 gage)	0.113	6d 8d	8d 10d	110 121	95 105	89 97	87 96	83 91	79 86	77 85	70 76	68 75	66 73
	0.120	100		134	116	108	106	101	96	94	85	83	81
	0.131	8d		140	121	112	110	105	99	97	88	86	84
	0.135	160	12d	147	127	118	116	110	104	102	92	91	88
	0.148			165	143	133	130	124	117	115	104	102	99
	0.162	16d 40d		193	166	154	152	145	137	134	121	119	115
	0.177	00.	20d	218	188	174	171	163	154	151	136	134	130
	0.192	20d 30d	30d 40d	226 244	195 210	181	177 191	169 182	159 172	156 168	141	138 149	135 145
	0.225	40d	400	265	228	211	207	198	186	183	164	161	157
	0.244	50d	60d	272	234	217	213	203	191	187	169	166	161
0.134	0.099	6d		95	82	76	74	71	66	65	58	56	54
(10 gage)	0.113	6d 8d		116	100	93	92	88	83	81	73	72	69
	0.120		10d	127	110	102	100	96	91	89	80	79	76
	0.128	100	1	140	122	113	111	106	100	98	89	87	85
	0.131	8d	12d	146 153	126 132	117 123	115 121	110 115	104 109	102 107	92 96	90 95	88 92
	0.148	10d 20d		172	148	138	135	129	122	120	108	106	104
	0.162	16d 40d		199	172	160	157	150	142	139	125	123	120
	0.177	1,48	20d	224	194	180	176	169	159	156	141	138	135
	0.192		30d	232	200	186	182	174	164	161	145	143	139
	0.207	30d	40d	249	215	199	196	187	176	173	156	153	149
	0.225	40d	200	270	233	216	212	202	191	187	168	165	161
0.179	0.244	50d 6d	60d 7d	277 97	239 82	221 76	217 74	207 71	195 66	192 65	173 58	170 56	165 54
(7 gage)	0.113	6d 8d	8d	126	107	99	97	92	86	84	76	74	70
1. 80801	0.120	00 00	10d	142	121	111	109	104	97	95	85	83	79
	0.128	100		161	137	126	124	118	111	108	97	94	90
	0.131	8d		168	144	132	130	123	116	114	102	99	94
	0.135	160		175	152	141	138	131	123	121	108	105	100
	0.148	10d 20d 16d 40d		195	170 194	158 180	155	148 169	140 160	137 157	123 142	121 140	117 136
	0.162	100 400	20d	249	215	200	197	188	178	174	157	155	151
	0.192	20d	30d	256	222	206	203	194	183	179	162	159	155
	0.207	30d	40d	272	236	219	215	205	194	190	172	169	164
	0.225	40d	1111201	292	252	234	230	220	207	203	184	180	176
	0.244	50d	60d	299	258	240	235	225	212	208	188	185	180
0.239	0.099	6d	7d	97	82	76	74	71	66	65	58	56	54
(3 gage)	0.113	6d 8d	8d 10d	126 142	107 121	99 111	97 109	92 104	86 97	84 95	76 85	74 83	70 79
	0.128	100		161	137	126	124	118	111	108	97	94	90
	0.121	8d	0	169	144	132	130	123	116	114	102	99	94
	0.135	160		180	153	141	138	131	123	121	108	105	100
	0.148			205	174	160	157	149	140	137	123	121	117
	0.162	16d 40d		245	209	192	188	179	168	165	147	145	140
	0.177	204	20d	284	241	222	218	207	195	191	170	167	162
	0.192	20d 30d	30d 40d	295 310	251 270	231 251	227 246	216 236	202	198 217	177	174	169 185
	0.207	40d	400	328	285	265	260	249	235	231	209	205	200
	0.244		60d	336	291	271	266	254	240	236	213	210	204

1. Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1).

3 Where the nail or spike penetration, p, is less than 10D but not less than 6D, tabulated lateral design values, Z, shall be multiplied by p/10D or lateral design values shall be calculated using the provisions of 12.3 for the reduced penetration.

DOWEL-TYPE FASTENERS

12

Tabulated lateral design values, Z, are for common, box, or sinker steel wire nails (see Appendix Table L4) inserted in side grain with nail axis perpendicular to wood fibers; nail penetration, p, into the main member equal to 10D; dowel bearing strength, F_e, of 61,850 psi for ASTM A653, Grade 33 steel and nail bending yield strengths, F_{pb}, of 100,000 psi for 0.099" ≤ D ≤ 0.142", 90,000 psi for 0.142" < D ≤ 0.177", 80,000 psi for 0.177" < D ≤ 0.236", 70,000 psi for 0.236" < D ≤ 0.273".

PROJECT NO.	SHEET NO.

PROJECT				
SUBJECT				
DV	DATE	/	/	
Dĭ	DAIE _		,	

Table 11.3.6A Group Action Factors, Cg' for Bolt or Lag Screw Connections with Wood Side Members²

	For D = 1", s = 4", E = 1,400,000 psi											
A_s/A_m^{-1}	A_s^1		Number of fasteners in a row									
	in. ²	2	3	4	5	6	7	8	9	10	11	12
0.5	5	0.98	0.92	0.84	0.75	0.68	0.61	0.55	0.50	0.45	0.41	0.38
	12	0.99	0.96	0.92	0.87	0.81	0.76	0.70	0.65	0.61	0.57	0.53
	20	0.99	0.98	0.95	0.91	0.87	0.83	0.78	0.74	0.70	0.66	0.62
	28	1.00	0.98	0.96	0.93	0.90	0.87	0.83	0.79	0.76	0.72	0.69
	40	1.00	0.99	0.97	0.95	0.93	0.90	0.87	0.84	0.81	0.78	0.75
	64	1.00	0.99	0.98	0.97	0.95	0.93	0.91	0.89	0.87	0.84	0.82
1	5	1.00	0.97	0.91	0.85	0.78	0.71	0.64	0.59	0.54	0.49	0.45
	12	1.00	0.99	0.96	0.93	0.88	0.84	0.79	0.74	0.70	0.65	0.61
	20	1.00	0.99	0.98	0.95	0.92	0.89	0.86	0.82	0.78	0.75	0.71
	28	1.00	0.99	0.98	0.97	0.94	0.92	0.89	0.86	0.83	0.80	0.77
	40	1.00	1.00	0.99	0.98	0.96	0.94	0.92	0.90	0.87	0.85	0.82
	64	1.00	1.00	0.99	0.98	0.97	0.96	0.95	0.93	0.91	0.90	0.88

Where A_r/A_m > 1.0, use A_m/A_s and use A_m instead of A_s.

Table 11.3.6B Group Action Factors, Cg, for 4" Split Ring or Shear Plate Connectors with Wood Side Members²

	s = 9", E = 1,400,000 psi												
A_s/A_m^{-1}	A _s ¹		Number of fasteners in a row										
	in.2	2	3	4	5	6	7	8	9	10	11	12	
0.5	5	0.90	0.73	0.59	0.48	0.41	0.35	0.31	0.27	0.25	0.22	0.20	
	12	0.95	0.83	0.71	0.60	0.52	0.45	0.40	0.36	0.32	0.29	0.27	
	20	0.97	0.88	0.78	0.69	0.60	0.53	0.47	0.43	0.39	0.35	0.32	
	28	0.97	0.91	0.82	0.74	0.66	0.59	0.53	0.48	0.44	0.40	0.37	
	40	0.98	0.93	0.86	0.79	0.72	0.65	0.59	0.54	0.49	0.45	0.42	
	64	0.99	0.95	0.91	0.85	0.79	0.73	0.67	0.62	0.58	0.54	0.50	
1	5	1.00	0.87	0.72	0.59	0.50	0.43	0.38	0.34	0.30	0.28	0.25	
	12	1.00	0.93	0.83	0.72	0.63	0.55	0.48	0.43	0.39	0.36	0.33	
	20	1.00	0.95	0.88	0.79	0.71	0.63	0.57	0.51	0.46	0.42	0.39	
	28	1.00	0.97	0.91	0.83	0.76	0.69	0.62	0.57	0.52	0.47	0.44	
	40	1.00	0.98	0.93	0.87	0.81	0.75	0.69	0.63	0.58	0.54	0.50	
	64	1.00	0.98	0.95	0.91	0.87	0.82	0.77	0.72	0.67	0.62	0.58	

Tabulated group action factors (Cg) are conservative for D < 1", s < 4", or E > 1,400,000 psi.

Where A_s/A_m > 1.0, use A_m/A_s and use A_m instead of A_s.
 Tabulated group action factors (C_g) are conservative for 2-1/2" split ring connectors, 2-5/8" shear plate connectors, s < 9", or E > 1,400,000 psi.

LONGITUDE
ONE TWENTY°

ENGINEERING & DESIGN

PROJECT NO.	SHEET NO.

	PROJECT				_
<u>.</u>	SUBJECT				_
	BY	DATE	/	/	

Table 11.3.6C	Group Action Factors, Cg' for Bolt or Lag Screw Connections with Steel
	Side Plates ¹

	For D = 1", s = 4", E_{wood} = 1,400,000 psi, E_{steel} = 30,000,000 psi A_{m}/A_{s} A_{m} Number of fasteners in a row											
A_m/A_s	A _m in. ²											
		2	3	4	5	6	7	8	9	10	11	12
12	5	0.97	0.89	0.80	0.70	0.62	0.55	0.49	0.44	0.40	0.37	0.34
	8	0.98	0.93	0.85	0.77	0.70	0.63	0.57	0.52	0.47	0.43	0.40
	16	0.99	0.96	0.92	0.86	0.80	0.75	0.69	0.64	0.60	0.55	0.52
	24	0.99	0.97	0.94	0.90	0.85	0.81	0.76	0.71	0.67	0.63	0.59
	40	1.00	0.98	0.96	0.94	0.90	0.87	0.83	0.79	0.76	0.72	0.69
	64	1.00	0.99	0.98	0.96	0.94	0.91	0.88	0.86	0.83	0.80	0.77
	120	1.00	0.99	0.99	0.98	0.96	0.95	0.93	0.91	0.90	0.87	0.85
	200	1.00	1.00	0.99	0.99	0.98	0.97	0.96	0.95	0.93	0.92	0.90
18	5	0.99	0.93	0.85	0.76	0.68	0.61	0.54	0.49	0.44	0.41	0.37
	8	0.99	0.95	0.90	0.83	0.75	0.69	0.62	0.57	0.52	0.48	0.44
	16	1.00	0.98	0.94	0.90	0.85	0.79	0.74	0.69	0.65	0.60	0.56
	24	1.00	0.98	0.96	0.93	0.89	0.85	0.80	0.76	0.72	0.68	0.64
	40	1.00	0.99	0.97	0.95	0.93	0.90	0.87	0.83	0.80	0.77	0.73
	64	1.00	0.99	0.98	0.97	0.95	0.93	0.91	0.89	0.86	0.83	0.81
	120	1.00	1.00	0.99	0.98	0.97	0.96	0.95	0.93	0.92	0.90	0.88
	200	1.00	1.00	0.99	0.99	0.98	0.98	0.97	0.96	0.95	0.94	0.92
24	40	1.00	0.99	0.97	0.95	0.93	0.89	0.86	0.83	0.79	0.76	0.72
	64	1.00	0.99	0.98	0.97	0.95	0.93	0.91	0.88	0.85	0.83	0.80
	120	1.00	1.00	0.99	0.98	0.97	0.96	0.95	0.93	0.91	0.90	0.88
	200	1.00	1.00	0.99	0.99	0.98	0.98	0.97	0.96	0.95	0.93	0.92
30	40	1.00	0.98	0.96	0.93	0.89	0.85	0.81	0.77	0.73	0.69	0.65
	64	1.00	0.99	0.97	0.95	0.93	0.90	0.87	0.83	0.80	0.77	0.73
	120	1.00	0.99	0.99	0.97	0.96	0.94	0.92	0.90	0.88	0.85	0.83
	200	1.00	1.00	0.99	0.98	0.97	0.96	0.95	0.94	0.92	0.90	0.89
35	40	0.99	0.97	0.94	0.91	0.86	0.82	0.77	0.73	0.68	0.64	0.60
	64	1.00	0.98	0.96	0.94	0.91	0.87	0.84	0.80	0.76	0.73	0.69
	120	1.00	0.99	0.98	0.97	0.95	0.92	0.90	0.88	0.85	0.82	0.79
	200	1.00	0.99	0.99	0.98	0.97	0.95	0.94	0.92	0.90	0.88	0.86
42	40	0.99	0.97	0.93	0.88	0.83	0.78	0.73	0.68	0.63	0.59	0.55
	64	0.99	0.98	0.95	0.92	0.88	0.84	0.80	0.76	0.72	0.68	0.64
	120	1.00	0.99	0.97	0.95	0.93	0.90	0.88	0.85	0.81	0.78	0.75
	200	1.00	0.99	0.98	0.97	0.96	0.94	0.92	0.90	0.88	0.85	0.83
50	40	0.99	0.96	0.91	0.85	0.79	0.74	0.68	0.63	0.58	0.54	0.51
	64	0.99	0.97	0.94	0.90	0.85	0.81	0.76	0.72	0.67	0.63	0.59
	120	1.00	0.98	0.97	0.94	0.91	0.88	0.85	0.81	0.78	0.74	0.71
	200	1.00	0.99	0.98	0.96	0.95	0.92	0.90	0.87	0.85	0.82	0.79

Tabulated group action factors (Cg) are conservative for D < 1" or s < 4".

LONGITUDE
ONE TWENTY°
ENGINEERING & DESIGN

PROJECT NO.	SHEET NO.

PROJECT				
SUBJECT				
BY	DATE _	/	/	

Table 11.3.6D Group Action Factors, Cg' for 4" Shear Plate Connectors with Steel Side Plates¹

		s =	= 9", E,	wood = 1	,400,00	0 psi, E	$t_{\text{steel}} = 3$	0,000,0	00 psi			
A_m/A_s	A _m in. ²					mber of	fasten	ers in a	row			
		2	3	4	5	6	7	8	9	10	11	12
12	5	0.91	0.75	0.60	0.50	0.42	0.36	0.31	0.28	0.25	0.23	0.21
	8	0.94	0.80	0.67	0.56	0.47	0.41	0.36	0.32	0.29	0.26	0.24
	16	0.96	0.87	0.76	0.66	0.58	0.51	0.45	0.40	0.37	0.33	0.31
	24	0.97	0.90	0.82	0.73	0.64	0.57	0.51	0.46	0.42	0.39	0.35
	40	0.98	0.94	0.87	0.80	0.73	0.66	0.60	0.55	0.50	0.46	0.43
	64	0.99	0.96	0.91	0.86	0.80	0.74	0.69	0.63	0.59	0.55	0.51
	120	0.99	0.98	0.95	0.91	0.87	0.83	0.79	0.74	0.70	0.66	0.63
	200	1.00	0.99	0.97	0.95	0.92	0.89	0.85	0.82	0.79	0.75	0.72
18	5	0.97	0.83	0.68	0.56	0.47	0.41	0.36	0.32	0.28	0.26	0.24
	8	0.98	0.87	0.74	0.62	0.53	0.46	0.40	0.36	0.32	0.30	0.27
	16	0.99	0.92	0.82	0.73	0.64	0.56	0.50	0.45	0.41	0.37	0.34
	24	0.99	0.94	0.87	0.78	0.70	0.63	0.57	0.51	0.47	0.43	0.39
	40	0.99	0.96	0.91	0.85	0.78	0.72	0.66	0.60	0.55	0.51	0.47
	64	1.00	0.97	0.94	0.89	0.84	0.79	0.74	0.69	0.64	0.60	0.56
	120	1.00	0.99	0.97	0.94	0.90	0.87	0.83	0.79	0.75	0.71	0.67
	200	1.00	0.99	0.98	0.96	0.94	0.91	0.89	0.86	0.82	0.79	0.76
24	40	1.00	0.96	0.91	0.84	0.77	0.71	0.65	0.59	0.54	0.50	0.46
	64	1.00	0.98	0.94	0.89	0.84	0.78	0.73	0.68	0.63	0.58	0.54
	120	1.00	0.99	0.96	0.94	0.90	0.86	0.82	0.78	0.74	0.70	0.66
	200	1.00	0.99	0.98	0.96	0.94	0.91	0.88	0.85	0.82	0.78	0.75
30	40	0.99	0.93	0.86	0.78	0.70	0.63	0.57	0.52	0.47	0.43	0.40
	64	0.99	0.96	0.90	0.84	0.78	0.71	0.66	0.60	0.56	0.51	0.48
	120	0.99	0.98	0.94	0.90	0.86	0.81	0.76	0.71	0.67	0.63	0.59
	200	1.00	0.98	0.96	0.94	0.91	0.87	0.83	0.79	0.76	0.72	0.68
35	40	0.98	0.91	0.83	0.74	0.66	0.59	0.53	0.48	0.43	0.40	0.36
	64	0.99	0.94	0.88	0.81	0.73	0.67	0.61	0.56	0.51	0.47	0.43
	120	0.99	0.97	0.93	0.88	0.82	0.77	0.72	0.67	0.62	0.58	0.54
	200	1.00	0.98	0.95	0.92	0.88	0.84	0.80	0.76	0.71	0.68	0.64
42	40	0.97	0.88	0.79	0.69	0.61	0.54	0.48	0.43	0.39	0.36	0.33
	64	0.98	0.92	0.84	0.76	0.69	0.62	0.56	0.51	0.46	0.42	0.39
	120	0.99	0.95	0.90	0.85	0.78	0.72	0.67	0.62	0.57	0.53	0.49
	200	0.99	0.97	0.94	0.90	0.85	0.80	0.76	0.71	0.67	0.62	0.59
50	40	0.95	0.86	0.75	0.65	0.56	0.49	0.44	0.39	0.35	0.32	0.30
l	64	0.97	0.90	0.81	0.72	0.64	0.57	0.51	0.46	0.42	0.38	0.35
	120	0.98	0.94	0.88	0.81	0.74	0.68	0.62	0.57	0.52	0.48	0.45
	200	0.99	0.96	0.92	0.87	0.82	0.77	0.71	0.66	0.62	0.58	0.54

Tabulated group action factors (C_g) are conservative for 2-5/8" shear plate connectors or s < 9".

TYPICAL POSTS

VITRUVIUS B	BUILD: OMER:	3/3/2021 StruCalc		COMPANY: DESIGNED BY: REVIEWED BY:	Man	Engineering & Desig is Thurfjell is Thurfjell	n, LLC
	LEVEL:	Roof		LOADING:	ASD		
LOCA	ATION:	2X4 STUD @ 16"		CODE:	2018	ig Code	
	TYPE:	COLUMN		NDS:	2018	NDS	
MAT	ERIAL:	SOLID SA	WN				
Hem-Fir	No.	. 2	(1) 1.5 X 3.5	DRY			

2X4 STUD @ 16" DIAGRAM

COLUMN PROP	PERTIES					
Start (ft): 0 End (ft): 8	Member Slope: 0/12	Actual Length (ft): 8				
Area	lx	ly	BSW	Lams	G	Kcr
(in²)	(in⁴)	(in⁴)	(lbf/ft)			Creep Factor
5.25	5.36	0.98	1.04	1	0.43	1
STRENGTH PRO	PERTIES					
	Fb (psi)	Ft (psi)	Fv (psi)	Fc (psi) Fc⊥(_j	psi) E (psi) x10	D³ Emin (psi) x10³
Base Values	850	525	150	1300 405	5 1300	470

	Fb (psi)	Ft (psi)	Fv (psi)	Fc (psi)	Fc⊥(psi)	E (psi) x10 ³	Emin (psi) x10 ³
Base Values	850	525	150	1300	405	1300	470
Adjusted Values	1275	788	150	1495	405	1300	470
c _M	1	1	1	1	1	1	1
c _T	1	1	1	1	1	1	1
c _i	1	1	1	1	1	1	1
C _F	1.5	1.5	1	1.15	1	1	1
Rending Adjustmen	nt Factors	C _c = 1 C = 1					

Bending Adjustment Factors $C_{fu} = 1$ $C_r = 1$

COLU	MN DATA								
		Unbraced Le	ength (ft)	Column End					
Cman	Langeth (ft)	v	V	Officet	CD	Vo(V Avis)	Va/V Avia	Val (d (V Avia)	Val /

 Span
 Length (ft)
 X
 Y
 Offset
 CP
 Ke(X Axis)
 Ke(Y Axis)
 KeL/d (X Axis)
 KeL/d (Y Axis)

 1
 8
 8
 4
 0
 0.24
 1.00
 1.00
 27.43
 32

PASS-FAIL

	PASS/FAIL	MAGNITUDE	STRENGTH	LOCATION (ft)	LOAD COMBO	DURATION FACTOR CD
Deflection (in)	PASS (90.5%)	0.025 (=L/3795)	0.267 (=L/360)	8	L	
Compressive Stress (psi)	PASS (3.0%)	344.4	355.2	0	D+L	1

REA	CTIONS	Units for V	: lbf Units for N	И: lbf-ft							
Z axis	DEAD	LIVE	LIVE ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
Α	8	1800	0	0	0	0	0	0	0	0	0
В	0	0	0	0	0	0	0	0	0	0	0
Reactio	n Location										

A LOAD LIST

LOAD LIST						
Туре	Left Magnitude	Right Magnitude	Load Start (ft)	Load End (ft)	Load Type	Direction
Point (lbf)	-1800	-	8	-	Live	Z
Self Weight (lbf/ft)	1.04	1.04	0	8	Dead	Z

D VITRUVIUS BU CUSTON PROJECT LOCATI	JILD: MER:	10/8/2020 StruCalc		COMPANY: DESIGNED BY: REVIEWED BY:	Man	Engineering & Designs Thurfjellns Thurfjellns Thurfjell	n, LLC
LOCATI T	ΓΙΟΝ: TYPE:	Main Floo 2x4 @ 12" COLUMN SOLID SA	O.C.	LOADING: CODE: NDS:	1	3 International Buildin 3 NDS	ng Code
Hem-Fir	No.	2	(1) 1.5 X 3.5	DRY			

2x4 @ 12" o.c. DIAGRAM

Start (ft): 0 End (f	t): 9 Member Slo	pe: 0/12 Actual Leng	th (ft): 9				
Area	lx	ly	/	BSW	Lams	G	Kcr
(in²)	(in ⁴)	(in	⁴)	(lbf/ft)			Creep Factor
5.25	5.36	0.9	98	1.04	1	0.43	1
STRENGTH P	ROPERTIES						
	Fb (psi)	Ft (psi)	Fv (psi)	Fc (psi)	Fc⊥(psi)	E (psi) x10 ³	Emin (psi) x10 ³
Base Values	850	525	150	1300	405	1300	470
djusted Values	1275	788	150	1495	405	1300	470
c _M	1	1	1	1	1	1	1
c _T	1	1	1	1	1	1	1
c _i	1	1	1	1	1	1	1
C _F	1.5	1.5	1	1.15	1	1	1

COLUI	VIIN DATA								
		Unbraced L	ength (ft)	Column End					
Span	Length (ft)	Х	Υ	Offset	CP	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (Y Axis)
1	9	9	2	0	0.25	1.00	1.00	30.86	16

PASS-FAIL						
	PASS/FAIL	MAGNITUDE	STRENGTH	LOCATION (ft)	LOAD COMBO	DURATION FACTOR CD
Deflection (in)	PASS (89.7%)	0.031 (=L/3495)	0.300 (=L/360)	9	L	
Compressive Stress (psi)	PASS (1.8%)	373.2	379.9	0	D+L	1
Tensile Stress (psi)	PASS (100.0%)	0.0	708.8	9	D	0.9

R	<u>EACTIONS</u>	V-(lbf)	M-(lbf-ft)								
Z ax	s DEAD	LIVE	LIVE ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
Α	9	1950	0	0	0	0	0	0	0	0	0
В	0	0	0	0	0	0	0	0	0	0	0
Read	tion Location										

Reaction Location						
Α						В
LOAD LIST						
Turna	Laft Managatturda	Discha Maranian da	1 1 C4 4 (f4)	1 1 F 1 (f4)	Land Torre	D:

Туре	Left Magnitude	Right Magnitude	Load Start (ft)	Load End (ft)	Load Type	Direction
Point (lbf)	-1950	-	9	-	Live	Z
Self Weight (lbf/ft)	1.04	1.04	0	9	Dead	Z

	DATE:	3/3/2021		COMPANY:	L120	Engineering & Desig	n, LLC
VITRUVIUS B	BUILD:	StruCalc		DESIGNED BY: Mans Thurfjell			
CUSTO	OMER:			REVIEWED BY:	Man	s Thurfjell	
PROJECT LOCAT	TION:					-	
		,					
L	LEVEL:	Roof		LOADING:	ASD		
LOCA	ATION:	(2) 2x4 (unbraced)		CODE:	2018 International Building Code		g Code
	TYPE:			NDS:	2018	NDS	
MATE	ERIAL:	SOLID SAWN					
Hem-Fir	No.	. 2	(2) 1.5 X 3.5	DRY			

COLUMN PROPE	RTIES					
Start (ft): 0 End (ft): 8	Member Slope: 0/12	Actual Length (ft): 8				
Area	lx	ly	BSW	Lams	G	Kcr
(in²)	(in⁴)	(in⁴)	(lbf/ft)			Creep Factor
10.5	10.72	1.97	2.07	2	0.43	1
STRENGTH PROP	PERTIES					

SINLINGIII	NOPERTIES						
	Fb (psi)	Ft (psi)	Fv (psi)	Fc (psi)	Fc⊥(psi)	E (psi) x10 ³	Emin (psi) x10 ³
Base Values	850	525	150	1300	405	1300	470
Adjusted Values	1275	788	150	1495	405	1300	470
c _M	1	1	1	1	1	1	1
c _T	1	1	1	1	1	1	1
c _i	1	1	1	1	1	1	1
C _F	1.5	1.5	1	1.15	1	1	1

Bending Adjustment Factors $C_{fu} = 1$ $C_r = 1$

COLUMN DATA	
COLUMNIA	

		Unbraced	Length (ft)	Column End					
Span	Length (ft)	X	Υ	Offset	CP	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (Y Axis)
1	8	8	8	0	0.14	1.00	1.00	27.43	32

PASS-FAIL

	PASS/FAIL	MAGNITUDE	STRENGTH	LOCATION (ft)	LOAD COMBO	DURATION FACTOR CD
Deflection (in)	PASS (96.0%)	0.011 (=L/9144)	0.267 (=L/360)	8	L	
Compressive Stress (psi)	PASS (0.9%)	211.1	213.1	0	D+L	1

REA	REACTIONS Units for V: lbf Units for M: lbf-ft												
Z axis	DEAD	LIVE	LIVE ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH		
Α	717	1500	0	0	0	0	0	0	0	0	0		
В	0	0	0	0	0	0	0	0	0	0	0		
Reactio	n Location												

LOAD LIST						
Туре	Left Magnitude	Right Magnitude	Load Start (ft)	Load End (ft)	Load Type	Direction
Point (lbf)	-1500	-	8	-	Live	Z
Point (lbf)	-700	-	8	-	Dead	Z
Self Weight (lbf/ft)	2.07	2.07	0	8	Dead	Z

	<u> </u>							
DATE	3/3/2021		COMPANY:	, 3 3 ,				
VITRUVIUS BUILD:	StruCalc		DESIGNED BY:	Man	s Thurfjell			
CUSTOMER			REVIEWED BY:	Man	s Thurfjell			
PROJECT LOCATION					,			
	,							
LEVEL	Roof		LOADING:	ASD				
LOCATION	(3) 2x4 (u	ınbraced)	CODE:	2018	International Buildin	g Code		
TYPE	COLUMN	l	NDS:		NDS			
MATERIAL	SOLID SA	WN						
Hem-Fir	No. 2	(3) 1.5 X 3.5	DRY					

COLUMN PROF	PERTIES					
Start (ft): 0 End (ft): 8	Member Slope: 0/12	Actual Length (ft): 8	;			
Area	lx	ly	BSW	Lams	G	Kcr
(in²)	(in⁴)	(in⁴)	(lbf/ft)			Creep Factor
15.75	16.08	2.95	3.11	3	0.43	1
STRENGTH PRO	OPERTIES					
	Fb (psi)	Ft (psi)	Fv (psi)	Fc (psi) Fc⊥	(psi) E (psi) x	10 ³ Emin (psi) x10 ³
Base Values	850	525	150	1300 4	05 1300	470

	Fb (psi)	Ft (psi)	Fv (psi)	Fc (psi)	Fc⊥(psi)	E (psi) x10 ³	Emin (psi) x10 ³
Base Values	850	525	150	1300	405	1300	470
Adjusted Values	1275	788	150	1495	405	1300	470
c _M	1	1	1	1	1	1	1
c _T	1	1	1	1	1	1	1
c _i	1	1	1	1	1	1	1
C _F	1.5	1.5	1	1.15	1	1	1
Rending Adjustmen	t Factors C	c = 1 C = 1					

Bending Adjustment Factors $C_{fu} = 1$ $C_r = 1$

\sim	J 11	N A N I	DV.	ТΛ
CO	ILU.	MN	DA	IΑ

		Unbraced	Length (ft)	Column End						
Span	Length (ft)	X	Υ	Offset	CP	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (Y Axis)	
1	8	8	8	0	0.29	1.00	1.00	27.43	21.33	

PASS-FAIL

	PASS/FAIL	MAGNITUDE	STRENGTH	LOCATION (ft)	LOAD COMBO	DURATION FACTOR CD
Deflection (in)	PASS (93.0%)	0.019 (=L/5107)	0.267 (=L/360)	8	L	
Compressive Stress (psi)	PASS (3.7%)	414.3	430.1	0	D+L	1

REA	CTIONS	Units for V	: lbf Units for I	M: lbf-ft							
Z axis	DEAD	LIVE	LIVE ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
Α	2525	4000	0	0	0	0	0	0	0	0	0
В	0	0	0	0	0	0	0	0	0	0	0
Reactio	n Location										

LOAD LIST						
Туре	Left Magnitude	Right Magnitude	Load Start (ft)	Load End (ft)	Load Type	Direction
Point (lbf)	-4000	-	8	-	Live	Z
Point (lbf)	-2500	-	8	-	Dead	Z
Self Weight (lbf/ft)	3.11	3.11	0	8	Dead	Z

D/	ATE: 3/3/2)21	COMPANY:	L120 Engineering & Design, LLC
VITRUVIUS BUI	ILD: StruC	alc	DESIGNED BY:	Mans Thurfjell
CUSTOM	ΛER:		REVIEWED BY:	Mans Thurfjell
PROJECT LOCATION	ON:			
LE'	VEL: Roof		LOADING:	ASD
LOCATI	ION: (4) 2x	4 (Unbraced)	CODE:	2018 International Building Code
T'	YPE: COLU	MN	NDS:	2018 NDS
MATER	RIAL: SOLIE	SAWN		
Hem-Fir	No. 2	(4) 1.5 X 3.5	DRY	

		-								
COLU	MN PROPER	TIES								
Start (ft): 0	End (ft): 8 N	lemb	er Slope: 0)/12 Actual Le	ngth (ft): 8					
A	Area		lx		ly	BSW	Lam	s	G	Kcr
(in²)		(in ⁴)		(in⁴)	(lbf/ft)				Creep Factor
	21		21.44		3.94	4.14	4		0.43	1
STREN	IGTH PROPE	RTI	ES							
	Fb (psi)		Ft (psi)	Fv (psi)	Fc (psi)	I	Fc⊥(psi)	E (psi) x10 ³	Emin (psi) x10 ³
Base Va	lues 8!	50		525	150	1300		405	1300	470
Adjusted Va	lues 12	75		788	150	1495		405	1300	470
	c _M	1		1	1	1		1	1	1
		1		1	1	1		1	1	1
	c _i	1		1	1	1		1	1	1
	C _F 1.	.5		1.5	1	1.15		1	1	1
Bending A	djustment Facto	rs	C _{fu} = 1	C _r = 1						
COLU	MN DATA									
			Unbra	ced Length (ft)	Column End					
Span	Length (ft)		Х	Υ	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (Y Axis)
1	8		8	8	0	0.32	1.00	1.00	27.43	16
PASS-	FAIL									
			PAS	S/FAIL	MAGNITUDE	STRENGTH	LOCA	TION (ft)	LOAD COMBO	DURATION FACTOR CO
	Deflection	(in)	PASS	(92.7%)	0.019 (=L/4975)	0.267 (=L/360)		8	L	
Com	pressive Stress	(psi)	PASS	(3.5%)	454.0	470.3		0	D+L	1

PASS-FAIL						
	PASS/FAIL	MAGNITUDE	STRENGTH	LOCATION (ft)	LOAD COMBO	DURATION FACTOR CD
Deflection (in)	PASS (92.7%)	0.019 (=L/4975)	0.267 (=L/360)	8	L	
Compressive Stress (psi)	DASS /3 E0/ \	454.0	470.0	•	~ .	_

REA	REACTIONS Units for V: lbf Units for M: lbf-ft													
Z axis	DEAD	LIVE	LIVE ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH			
Α	4033	5500	0	0	0	0	0	0	0	0	0			
В	0	0	0	0	0	0	0	0	0	0	0			
Reactio	n Location													

A						В
LOAD LIST						
Туре	Left Magnitude	Right Magnitude	Load Start (ft)	Load End (ft)	Load Type	Direction
Point (lbf)	-4000	-	8	-	Dead	Z
Point (lbf)	-5500	-	8	-	Live	Z
Self Weight (lbf/ft)	4.14	4.14	0	8	Dead	Z

VITRUVIUS CUS PROJECT LOC	TOMER:	10/9/2020 StruCalc		COMPANY: DESIGNED BY: REVIEWED BY:	Man	Engineering & Designs Thurfjellns Thurfjellns Thurfjell	ın, LLC
	LEVEL:	Main Floo	or	LOADING:	ASD		
LOC	CATION:	2x6 stud		CODE:	2018	International Buildin	ng Code
	TYPE:	COLUMN		NDS:	2018	NDS	
MA	TERIAL:	SOLID SA	WN				
Hem-Fir	No	. 2	(1) 1.5 X 5.5	DRY			

2x6 stud DIAGRAM

COLUN	IN PROPERTIES							
		ber Slope: 0/12 Actual	Length (ft): 9					
Α	rea	lx	ly	BSW	Lams		G	Kcr
(i	n²)	(in ⁴)	(in ⁴)	(lbf/ft)				Creep Factor
8	25	20.8	1.55	1.63	1		0.43	1
STREN	GTH PROPERTI	ES						
	Fb (psi)	Ft (psi)	Fv (psi)	Fc (psi)	Fo	⊥(psi)	E (psi) x10 ³	Emin (psi) x10 ³
Base Va	lues 850	525	150	1300		405	1300	470
ljusted Val	ues 1105	682	150	1430		405	1300	470
	C _M 1	1	1	1		1	1	1
	C _T 1	1	1	1		1	1	1
	C _i 1	1	1	1		1	1	1
	C _F 1.3	1.3	1	1.1		1	1	1
ending Ad	ljustment Factors	C _{fu} = 1 C _r = 1						
COLUN	IN DATA							
		Unbraced Length (f	c) Column End					
pan	Length (ft)	X Y	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (Y Axis)
1	9	9 2	0	0.56	1.00	1.00	19.64	16
PASS-F	AIL							
		PASS/FAIL	MAGNITUDE	STRENGTH	LOCATI	ON (ft)	LOAD COMBO	DURATION FACTOR
	Deflection (in)	PASS (88.3%)	0.035 (=L/3068)	0.300 (=L/360)	g)	L	
Com	pressive Stress (psi)	PASS (1.2%)	789.7	799.3	()	D+L	1

REA	CTIONS	V-(lbf)	M-(lbf-ft)								
Z axis	DEAD	LIVE	LIVE ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
Α	3015	3500	0	0	0	0	0	0	0	0	0
В	0	0	0	0	0	0	0	0	0	0	0
Reactio	n Location										

_ A						В
LOAD LIST						
Туре	Left Magnitude	Right Magnitude	Load Start (ft)	Load End (ft)	Load Type	Direction
Point (lbf)	-3500	-	9	-	Live	Z
Point (lbf)	-3000	-	9	-	Dead	Z
Self Weight (lbf/ft)	1.63	1.63	0	9	Dead	Z

DATE	3/3/2021		COMPANY:	L120	Engineering & Desig	n, LLC	
VITRUVIUS BUILD	VITRUVIUS BUILD: StruCalc			DESIGNED BY: Mans Thurfjell			
CUSTOMER	CUSTOMER:				s Thurfjell		
PROJECT LOCATION	PROJECT LOCATION:				-		
	<u> </u>						
LEVEI	Roof		LOADING:	ASD			
LOCATION	(2) 2x6 (l	Jnbraced)	CODE:	2018	International Buildin	g Code	
TYPE	COLUMN		NDS:	2018	NDS		
MATERIAL	SOLID SA	WN					
Hem-Fir No. 2		(2) 1.5 X 5.5	DRY				

COLUM	IN	PROI	PER	TIES	
Start (ft): 0	Fn	d (ft)· 8	R M	lembei	. (

Member Slope: 0/12 Actual Length (ft): 8 BSW lх Lams Kcr Area ly (in²) (in⁴) (in⁴) (lbf/ft) **Creep Factor** 16.5 41.59 3.09 0.43 3.26 1

STRENGTH PROPERTIES	
Fb (psi)	

	Fb (psi)	Ft (psi)	Fv (psi)	Fc (psi)	Fc⊥(psi)	E (psi) x10 ³	Emin (psi) x10 ³
Base Values	850	525	150	1300	405	1300	470
Adjusted Values	1105	682	150	1430	405	1300	470
c _M	1	1	1	1	1	1	1
c _T	1	1	1	1	1	1	1
c _i	1	1	1	1	1	1	1
C _F	1.3	1.3	1	1.1	1	1	1

Bending Adjustment Factors $C_{fu} = 1$ $C_r = 1$

COLUMN DATA

		Unbraced	Length (ft)	Column End					
Span	Length (ft)	Χ	Υ	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (Y Axis)
1	8	8	8	0	0.15	1.00	1.00	17.45	32

PASS-FAIL

	PASS/FAIL	MAGNITUDE	STRENGTH	LOCATION (ft)	LOAD COMBO	DURATION FACTOR CD
Deflection (in)	PASS (96.6%)	0.009 (=L/10668)	0.267 (=L/360)	8	L	
Compressive Stress (psi)	PASS (2.2%)	207.6	212.4	0	D+L	1

REA	REACTIONS Units for V: lbf Units for M: lbf-ft												
Z axis	DEAD	LIVE	LIVE ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH		
Α	1426	2000	0	0	0	0	0	0	0	0	0		
В	0	0	0	0	0	0	0	0	0	0	0		

Reaction Location

_ A						В
LOAD LIST						
Туре	Left Magnitude	Right Magnitude	Load Start (ft)	Load End (ft)	Load Type	Direction
Point (lbf)	-1400	-	8	-	Dead	Z
Point (lbf)	-2000	-	8	-	Live	Z
Self Weight (lbf/ft)	3.26	3.26	0	8	Dead	7

DAT	: 3/3/2021		COMPANY:	L120	Engineering & Desig	n, LLC
VITRUVIUS BUILD	StruCalc		DESIGNED BY:	Man	s Thurfjell	
CUSTOMER	:		REVIEWED BY:	Man	s Thurfjell	
PROJECT LOCATION						
	<u>'</u>			ASD		
LEVE	: Roof	Roof LO				
LOCATION	: (3) 2x6 (l	3) 2x6 (Unbraced)			International Buildin	g Code
TYP	: COLUMN		NDS:	2018	NDS	
MATERIAI	SOLID SA	WN				
Hem-Fir						

COLUMN PR	OPERTIES						
Start (ft): 0 End (ft	t): 8 Member Slope:	0/12 Actual Lengt	h (ft): 8				
Area	lx		ly	BSW	Lams	G	Kcr
(in²)	(in ⁴)	(i	n⁴)	(lbf/ft)			Creep Factor
24.75	62.39	4	.64	4.88	3	0.43	1
STRENGTH P	PROPERTIES Fb (psi)	Ft (psi)	Fv (psi)	Fc (psi)	Fc⊥(psi)	E (psi) x10 ³	Emin (psi) x10³
Base Values	850	525	150	1300	405	1300	470
Adjusted Values	1105	682	150	1430	405	1300	470
C _M	1	1	1	1	1	1	1
c _T	1	1	1	1	1	1	1
c _i	1	1	1	1	1	1	1
Cr	1.3	1.3	1	1.1	1	1	1

Base Values	850	525	150	1300	405	1300	470
Adjusted Values	1105	682	150	1430	405	1300	470
c _M	1	1	1	1	1	1	1
c _T	1	1	1	1	1	1	1
c _i	1	1	1	1	1	1	1
C _F	1.3	1.3	1	1.1	1	1	1
Bending Adjustment	Factors C _{fu}	= 1 C _r = 1					

COLUI	MN DATA									
		Unbraced Le	ength (ft)	Column End						
Span	Length (ft)	X	Υ	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (Y Axis)	
1	8	8	8	0	0.30	1.00	1.00	17 45	21 33	

PASS-FAIL						
	PASS/FAIL	MAGNITUDE	STRENGTH	LOCATION (ft)	LOAD COMBO	DURATION FACTOR CD
Deflection (in)	PASS (93.3%)	0.018 (=L/5364)	0.267 (=L/360)	8	L	
Compressive Stress (psi)	PASS (4.7%)	405.6	425.6	0	D+L	1

REA	REACTIONS Units for V: lbf Units for M: lbf-ft												
Z axis	DEAD	LIVE	LIVE ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH		
Α	4039	6000	0	0	0	0	0	0	0	0	0		
В	0	0	0	0	0	0	0	0	0	0	0		
Reaction	n Location												

LOAD LIST						В
Туре	Left Magnitude	Right Magnitude	Load Start (ft)	Load End (ft)	Load Type	Direction
Point (lbf)	-4000	-	8	-	Dead	Z
Point (lbf)	-6000	-	8	-	Live	Z
Self Weight (lbf/ft)	4.88	4.88	0	8	Dead	Z

DAT	: 3/3/2021		COMPANY:	L120	Engineering & Desig	n, LLC	
VITRUVIUS BUILD	StruCalc		DESIGNED BY:	Man	s Thurfjell		
CUSTOMEI	:		REVIEWED BY:	Man	s Thurfjell		
PROJECT LOCATION	:						
	,		LOADING:	ASD			
LEVE	: Roof						
LOCATION	: (4) 2x6 (l	(4) 2x6 (Unbraced) CO			: 2018 International Building Code		
TYP	: COLUMN	l	NDS:	2018	B NDS		
MATERIA	: SOLID SA	AWN					
Hem-Fir	No. 2	(4) 1.5 X 5.5	DRY				

COLUMN PROPERTIES Start (ft): 0 End (ft): 8 Member Slope: 0/12 Actual Length (ft): 8 BSW Area lx Lams Kcr ly (in²) (in⁴) (in⁴) (lbf/ft) **Creep Factor** 6.19 0.43 33 83.19 6.51 STRENGTH PROPERTIES Fb (psi) Fv (psi) Fc (psi) Fc⊥(psi) E (psi) x10³ Emin (psi) x10³ Ft (psi) **Base Values** 850 525 150 1300 405 1300 470 **Adjusted Values** 1105 682 150 1430 405 1300 470 1 1 1 1 1 1 1 c_{M} c_T 1 1 c_i 1 1 1 1 1 1 1 1.3 1.3 1.1 1 1

o _F 3		1
Bending Adjustment Factors	C _{f11} = 1	C _r = 1

_	$\overline{}$		-	١п	_	ГΑ	

		Unbraced	Length (ft)	Column End						
Span	Length (ft)	Х	Υ	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (Y Axis)	
1	8	8	8	0	0.43	1.00	1.00	17.45	16	

PASS-FAIL

	PASS/FAIL	MAGNITUDE	STRENGTH	LOCATION (ft)	LOAD COMBO	DURATION FACTOR CD
Deflection (in)	PASS (91.6%)	0.022 (=L/4286)	0.267 (=L/360)	8	L	
Compressive Stress (psi)	PASS (10.1%)	547.0	608.6	0	D+L	1

REA	CTIONS	Units for V	: lbf Units for I	M: lbf-ft							
Z axis	DEAD	LIVE	LIVE ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
Α	8052	10000	0	0	0	0	0	0	0	0	0
В	0	0	0	0	0	0	0	0	0	0	0
Reactio	n Location										

A

LOAD LIST						
Туре	Left Magnitude	Right Magnitude	Load Start (ft)	Load End (ft)	Load Type	Direction
Point (lbf)	-8000	-	8	-	Dead	Z
Point (lbf)	-10000	-	8	-	Live	Z
Self Weight (lbf/ft)	6.51	6.51	0	8	Dead	Z